

July 19, 2016

Ms. Richelle Hanson, Project Manager Land Restoration Program Land Management Administration Maryland Department of the Environment 1800 Washington Boulevard, Suite 625 Baltimore, Maryland 21230-1719

Re: HydraSleeve Field Demonstration Study

Former Kop-Flex Facility Property, Hanover, Anne Arundel County, Maryland

Brownfield Master Inventory Number MD0286

Dear Ms. Hanson:

WSP USA Corp. (WSP) is providing this report presenting the results of the HydraSleeve field demonstration study conducted at the Former Kop-Flex facility property, which is currently owned by TC Harmans, LLC (the "Site"), in Hanover, MD. The primary objective of the field study was to gather data to assess the performance of the HydraSleeve sampling device in obtaining representative groundwater samples to determine volatile organic compound (VOC) concentrations at the Site. The results of the field demonstration were evaluated to determine whether this sampling method would be appropriate for the long-term groundwater monitoring activities at the site.

Study Approach

Previous groundwater monitoring events at the Site have utilized both standard purge and low flow purging methods to collect samples for VOC analysis. Recent studies have indicated the effectiveness of passive, or no-purge, sampling technologies, such as the HydraSleeve sampler, which is a grab-sampling device that collects an "instantaneous" groundwater sample without the purging or mixing of water within the well. Salient findings concerning the effectiveness of the HydraSleeve sampler include its ability to (1) obtain data for site-related constituents of concern (COCs), including 1,4-dioxane, because the method involves the collection of a grab sample from the well screen and (2) collect representative samples from both low and high yield wells. The approach used to evaluate the applicability of this sampling method is discussed in Section 6 of Appendix H – Groundwater Monitoring Plan of the Response Action Plan (October 2015) and involves comparison of the results for samples collected in March 2016 using the HydraSleeve with data from semi-annual sampling events conducted between June 2012 and December 2015.

The remaining sections of this report provide a discussion of the field sampling activities and results, and an evaluation of the performance of the HydraSleeve device to obtain representative groundwater quality samples.

Sampling Activities

On March 7th, 2016, HydraSleeve samplers were deployed in 6 of the wells comprising the groundwater monitoring network for the surficial hydrogeologic unit, and 5 wells in the confined portion of the Lower Patapsco aquifer. The selected monitoring points are listed below and identified in Figure 1.

Surficial Unit	Confined Lower <u>Patapsco Aquifer</u>
MW-01 MW-16	MW-1D
MW-04 MW-18	MW-16D
MW-03	MW-21D
MW-09	MW-23D
	MW-24D

Sampling locations for the field demonstration test were selected to include wells that are screened in both low and high permeability aquifer materials and have data from a minimum of seven previous monitoring events. For the surficial unit, three of the proposed HydraSleeve test locations (MW-04, MW-09, and MW-16) are within the inferred limits of the VOC plume, with the three remaining wells (MW-01, MW-03, and MW-18) hydraulically cross-gradient or downgradient of the area of VOC affected groundwater. All of the selected wells in the confined portion of the Lower Patapsco aquifer are within the VOC plume.

The depth to water and total depth were measured for the selected wells prior to deployment of the HydraSeleeve samplers. These field measurements were reviewed, along with the well construction information, to determine the target depths for placing the sampling device. A single, 2.5-foot long HydraSleeve sampler was placed down each well to collect groundwater samples for the field demonstration test. Each HydraSleeve sampler was attached to a weighted, nylon suspension tether and set at a pre-determined depth within the screen interval. The suspension line was then secured at the top of the well casing to ensure the sampler remained at the designated depth during the two-week re-stabilization period.

On March 21st, 2016, a groundwater sample was collected by removing the sampler from the well. The depth interval from which the samples were obtained in each well are provided in Table 1. Prior to sample collection, a clean multi-parameter field probe was inserted into the HydraSleeve for measurement of the following hydrogeochemical parameters:

- Temperature
- BH
- Specific conductivity

The field parameter measurements for each sample were documented in a field notebook and are provided in Table 2. All readings were consistent with field measurements from previous sampling events for the wells, including the anomalously high pH for the water in MW-16-50. The groundwater samples were then collected in the appropriate containers, which were packed on ice and shipped using chain of custody protocols to the Pace Analytical Services laboratory in Huntersville, North Carolina. The samples were analyzed for VOCs using US Environmental Protection Agency (EPA) SW-846 Test Method 8260B and 1,4-dioxane using modified USEPA Method 8260B with selective ion monitoring.

The field QC samples collected to assess the data quality during the sampling activities included of a trip blank, field duplicate and equipment blank. The equipment blank was used as a control sample to identify potential biases for any of the target analytes. This sample was collected by filling one, un-used sampler with deionized water, and then transferring water to the sample containers in the same manner as a groundwater sample.

HydraSleeve Groundwater Sampling Results

The analytical results for the HydraSleeve samples are summarized in Table 3. Copies of the certified laboratory analytical reports are included in Enclosure A. The Hydrasleeve samples most commonly contained the following VOCs, which are the principal chemicals of concern (COCs) at the Site:

- 1,1,1-Trichloroethane (TCA)
- 1,1-Dichloroethane (DCA)
- 1,1-Dichloroethene (DCE)
- 1,4-Dioxane

No VOCs were detected in the equipment blank collected during the field sampling activities. Based on these results, samples collected using the HydraSleeve do not present any inherent biases for any of the target analytes.

VOCs detected above the Maryland Groundwater Quality Standards (GWQS) included 1,1,1-TCA and its degradation products (1,1-DCA, 1,2-DCA and 1,1-DCE) and the chlorinated ethenes tetrachloroethene (PCE) and trichloroethene (TCE). In addition, 1,4-dioxane was detected at concentrations above MDE's recommended risk-based level in drinking water of 6.7 micrograms per liter. An overall comparison of results for historical samples collected using conventional methods as opposed to samples obtained using the HydraSleeve shows minimal difference with respect to exceedences of the GWQS. The HydraSleeve results for 1,1-DCA in MW-24D-128 was the only instance where a constituent was below criteria in a well where it had previously been above criteria. However, it is important to note that previous sampling at this location has fluctuated above and below criteria. The HydraSleeve sampling method should have little effect on the shape and size of the plume.

Evaluation of HydraSleeve Sampling Results

Comparison of VOC Concentrations and Data Plots

Data from seven previous sampling events was compiled to use as a basis of comparison to the Hydrasleeve sampling method data. The data covers semi-annual sampling events between June of 2012 and June of 2015. The June 2012 through June 2014 sampling events were all conducted using a standard purge method, where three to five well volumes were removed from the well to ensure that the sample was representative of the water in the aquifer. Since the standard purge method generates large quantities of purge water, it was replaced by the low-flow sampling method with the shutdown of the Area 1 system in late 2013. During the December 2014 and June 2015 events, low-flow sampling methods were performed on wells MW-1D-112, MW-04-38, MW-16-50, MW-16D-100, MW-21D-102, MW-23D-92, and MW-24D-128. The standard purge method was used in place of the low-flow procedure for the remaining wells (MW-01-36, MW-03-25.5, MW-09-25, and MW-18-56) due to low well yield. Even though both the standard purge and low flow methods have been used, the majority of the samples collected during the 2012 through 2015 monitoring events utilized the standard purge procedure. The historical analytical results (including duplicates) for the June 2012 to June 2015 are provided in Enclosure B.

The evaluation of the sampling results focused on the primary VOCs of concern at the site, which include the following:

- 1,1,1-TCA
- 1.1-DCA
- 1.1-DCE
- 1,4-Dioxane

Table 4 presents a comparison of the concentration data from the June 2012 through June 2015 low-flow and standard purge sampling events with the results of the HydraSleeve samples. For each well, mean and median concentrations were calculated for each constituent based on the 2012-2015 monitoring events. Data for samples collected using both the standard purge and low-flow methods were combined to generate single values representative of VOC concentrations at each well location that could be compared with the single HydraSleeve sample result. Overall, samples obtained using the conventional sampling methods typically have higher concentrations of the primary VOCs in both shallow and deep wells. A closer examination of the data indicates the concentrations in samples collected using the low-flow and HydraSleeve methods were typically lower than the standard purge sample results.

A graphical comparison of the data obtained using the different sampling methods is depicted in the plots for total VOCs (Figure 2) and primary site-specific VOCs (Figures 3 through 6). For these plots, each point compares the concentration detected in the March 2016 HydraSleeve sample to the arithmetic mean for the traditional (standard purge and low-flow purge) samples obtained from the June 2012 through June 2015 monitoring events. The error bars shown in the graphs indicate the range of values for the standard purge and low-flow samples. Overall, the plots indicate generally good equivalency between the data obtained from each sampling method, although there is a general tendency toward lower VOC concentrations in the HydraSleeve samples compared to the mean values for the combined low-flow and standard purge samples. The wells that consistently have both the concentration mean and range lie below the equal concentration line include MW-09 in the surficial zone and MW-1D and MW-21D in the deeper confined zone. Conversely, the mean and range for the MW-04 samples typically plot above the 1:1 line, indicating the tendency for higher concentrations in the HydraSleeve sample compared to the standard purge and low-flow results.

Median Percent Difference

For each constituent, the Relative Percent Difference (RPD) was calculated for each traditional sampling method – HydraSleeve sampling method data pair using the following equation:

 $RPD = 100*\{(A-B)/[(A+B)/2]\}$

Where:

A = mean concentration for samples collected using the standard purge and low-flow methods; and B = concentration from sample collected using the HydraSleeve method

After calculating the individual RPD values, the median of the RPDs was determined by ranking the values from lowest to highest and selecting the middle value in the ranked set. The median RPD serves as a quantitative measure of the similarity between the sampling methods. A positive median RPD value indicates the concentrations in samples obtained using conventional groundwater sampling methods is frequently greater than the concentration in the HydraSleeve sample from the same well, while a negative value indicates the converse situation. Additionally, median RPD values approaching zero indicate the different sampling methods will tend to provide similar results, whereas higher values will indicates the results for one sampling method differ significantly from the other method. For this evaluation, median RPDs greater than 25% or less than -25% were considered to be indicative of a condition where the conventional sampling methods were more likely to provide a significantly higher, or lower, concentration than the passive sampler. This value is similar to RPD criteria that have been previously used to evaluate bias in laboratory analytical data for groundwater samples.

Table 5 includes the results of the median RPD analysis for the primary VOCs of concern at the site. The positive median RPD values indicate concentrations for these constituents are higher in samples collected using the standard purge and low-flow methods compared to the HydraSleeve sampler. The values for 1,1-DCA (20.4%) and 1,1-DCE (23.7%) indicate the different sampling methods return similar concentrations, while the higher values for 1,4-dioxane (34%) and 1,1,1-TCA (41.5%) indicate a meaningful difference in the concentrations. Based on this analysis, the greatest apparent discrepancies in sample concentrations are associated with 1,1,1-TCA and 1,4-dioxane.

Tarone-Ware Two-Sample Test

The Tarone-Ware Two-Sample Test for Censored Data (Tarone-Ware Test) was performed to determine if the mean analytical results for samples collected using conventional methods and results for the 2016 HydraSleeve samples represent different populations. This test is a non-parametric hypothesis testing procedure that is used on data sets where the presence of non-detect measurements may impact the applicability of other comparison methods such the Wilcoxon Rank-Sum Test. Based on the previous sampling results, both conventional method and HydraSleeve samples collected from a small number of monitoring wells screened in the surficial groundwater zone are characterized by non-detect concentrations for the primary VOCs of concern at the site. Using this method, a Tarone-Ware test statistic is calculated along with a critical point value at the selected significance level. Comparison of the test statistic with the critical point value was used to determine whether the measurements represent two different populations.

The results of the Tarone-Ware test analyses are summarized in Table 5. The values presented represent the confidence level that the samples collected using the different methods satisfy the null hypothesis – i.e., the concentrations in the standard purge and low-flow samples and HydraSleeve samples are similar. For this evaluation, if the confidence level was greater than 90%, it was concluded the two populations were identical at a statistically significant level. Using a 90% confidence level, the test show the concentrations for 1,1,-DCA, 1,1-DCE, and 1,4-dioxane in the HydraSleeve samples are statistically similar to the previous results for samples collected by conventional sampling methods. Evaluation of 1,1,1-TCA indicates the concentrations in the HydraSleeve samples are different when compared to the previous sampling results.

Sampler Assessment and Recommendation

An overall qualitative assessment of the sampling data for the primary site-related VOCs was performed using the statistical (Tarone-Ware) and quantitative (median RPD) test results and an evaluation of the data plots. The resulting determination is indicated under the column "Evaluation Conclusion" in Table 5. Even though the 1,1-DCA and 1,1-DCE concentrations were typically higher in samples collected using conventional (standard or low-flow purging) methods compared to the HydraSleeve, the results of the quantitative (median RPD) and statistical (Tarone-Ware) tests indicate general similarity in the sample results. Therefore, the observation that HydraSleeve results are consistent with the previous monitoring data is deemed valid for these compounds. Comparison of the concentration data and test results are also consistent for 1,1,1-TCA, but in a manner that shows a difference between the sampling methods. For 1,4-dioxane, the comparison is less straight-forward due to the variability in the findings from the quantitative and statistical tests. Given these results, it was concluded the 1,4-dioxane concentrations tend to be approximately similar, although slightly higher in samples collected using either the standard purge or low-flow purging methods as opposed to the HydraSleeve. This difference between the conventional and HydraSleeve samples may be due to the fact that the samples were derived from highly permeable sandy deposits, where the purging rate could result in increased mass transport toward the monitoring point, and thus samples with higher VOC concentrations than samples

collected using the HydraSleeve which are more representative of natural (i.e., non-pumping) groundwater flow conditions.

The presence of higher VOC concentrations in the HydraSleeve sample from well MW-04 is believed to reflect the presence of silt and clay and clayey sand layers in the portion of the aquifer screened by this well. These layers of fine-grained deposits represent zones of sluggish groundwater flow, which can allow for the storage of dissolved and adsorbed mass. The presence of this localized aquifer heterogeneity results in higher VOC concentrations in the HydraSleeve sample, primarily because this sample includes contributions from both the mobile fraction and diffuse VOC mass stored within clayey materials while low-flow and standard purge samples would largely reflect mobile VOCs moving through the primary flow zones.

Using a broad weight-of-evidence approach, WSP concludes that VOC concentrations in the HydraSleeve samples appear to be similar to the concentrations detected in the standard purge and low-flow samples. Given this conclusion, WSP recommends the use of the HydraSleeve sampling device for the long-term groundwater monitoring program at the site.

Sincerely yours,

R. Eric Johnson, PG, PhD Senior Technical Manager

REJ:rjw:kjb

Enclosures

cc/encl.: Erich Weissbart, U.S. Environmental Protection Agency, Region III

Stephen Clarke, EMERSUB 16 LLC Raymond Goins, Trammell Crow, Inc. Michael Bell, ECS – Mid-Atlantic, Inc.

Figures

Tables

Table 1

HydraSleeve Sampling Information
Former Kop-Flex Facility Site
Hanover, Maryland
March 2016

Well ID	Top of Casing Elevation (feet MSL)	Depth To Water (feet bgs)	Groundwater Elevation (feet MSL)	Well Depth (feet bgs)	Well Screened Interval (feet bgs)	HydraSleeve Sample Interval (feet bgs)
MW-01-33	133.312	17.49	115.82	33	23-33	25.5-28
MW-1D-112	129.672	39.61	90.06	112	102-112	104.5-107
MW-03-25.5	117.442	9.89	107.55	25.5	15.5-25.5	18-20.5
MW-04-38	129.102	13.75	115.35	38	28-38	30.5-33
MW-09-25	125.102	9.51	115.59	25	15-25	17.5-20
MW-16-50	123.792	32.96	90.83	50	40-50	42.5-45
MW-16D-100	123.912	39.09	84.82	100	90-100	92.5-95
MW-18-56	122.852	17.88	104.97	56	46-56	48.5-51
MW-21D-102	122.992	32.84	90.15	102	92-102	94.5-97
MW-23D-92	128.852	30.4	98.45	92	82-92	84.5-87
MW-24D-128	129.102	44.38	84.72	128	118-128	120.5-123

a/ MSL = mean sea level; bgs = below ground surface

Table 2

HydraSleeve Sampling Field Parameters
Former Kop-Flex Facility Site
Hanover, Maryland
March 2016

Well ID	Temperature (C)	рН	Specific Conductivity (mS/cm)
MW-01-33	12.60	5.29	0.24
MW-1D-112	13.80	4.49	0.04
MW-03-25.5	8.90	6.96	0.37
MW-04-38	12.90	6.22	0.40
MW-09-25	12.80	6.13	0.21
MW-16-50	13.30	11.94	3.24
MW-16D-100	14.40	4.54	0.15
MW-18-56	11.30	5.12	0.20
MW-21D-102	10.50	4.41	0.05
MW-23D-92	13.00	5.60	0.11
MW-24D-128	13.70	5.42	0.15

Table 3

HydraSleeve Groundwater Sample Results Former Kop-Flex Facility Site Hanover, Maryland March 2016

Analyte (b)	Groundwater Quality Criteria (ug/L)	MW-01-33 3/21/2016	MW-1D-112 3/21/2016	MW-03-25.5 3/21/2016	MW-04-38 3/21/2016	MW-09-25 3/21/2016	MW-18-56 3/21/2016	MW-16-50 3/21/2016	MW-16D-100 3/21/2016	MW-21D-102 3/21/2016	MW-23D-92 3/21/2016	MW-24D-128 3/22/2016	MW-100 3/21/2016
Benzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	4.4	12.5 U	1 U
Chloroform	80	1 U	1 U	1 U	1.6	1 U	1 U	1 U	1 U	1 U	1 U	12.5 U	1 U
Chloroethane	3.6	1 U	1 U	1 U	1 U	1 U	1 U	176	1 U	1 U	1 U	12.5 U	1 U
1,1,1-Trichloroethane	200	1 U	21	1 U	58.2	2.1	1 U	7,410	27.9	1 U	25.7	28.0	1 U
1,1-Dichloroethane	90	1 U	18.1	1 U	422	4	1 U	5,350	59.7	2.8	39.6	68.2	1 U
1,1-Dichloroethene	7	1 U	148	1 U	1,180	74	1 U	6,660	182	20.5	138	1,280	1 U
1,2-Dichloroethane	5	1 U	1.9	1 U	10.1	1 U	1 U	1 U	2.8	1 U	1.9	12.5 U	1 U
Trichloroethene	5	1 U	1 U	1 U	10.9	1 U	1 U	68.2	1.1	1 U	1 U	12.5 U	1 U
1,4-Dioxane	6.7 (d)	2.3	98.9	3.2	878	29.9	2 U	903	92.1	19.8	131	452	2 U
Tetrachloroethene	5	1 U	1 U	1 U	5.3	1 U	1 U	1 U	1 U	1 U	1 U	12.5 U	1 U

a/ U = not detected at a concentration above the method detection limit

Bolded number indicates concentration above the groundwater quality criteria

b/ All concentrations in micrograms per liter (µg/l)

c/ Groundwater Quality Criteria sources:

RSLs: http://www.mde.maryland.gov/assets/document/Final%20Update%20No%202.1%20dated%205-20-08(1).pdf d/ Value represents MDE risk-based cleanup level.

Table 4

Comparison of Traditional and HydraSleeve Sample Results for Primary VOCs of Concern Former Kop-Flex Facility Site Hanover, Maryland March 2016 (a)

HydraSleeve **Traditional Sampling Methods** Method Well ID Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 Mean Median Range Mar-16 MW-01-33 1 U 1 U 1 U 1 U 1 U 1 U 1 U 5 U 1,1,1-TCA - -1,1-DCE 5 U 1 U 1 U 1 U 1 U 1 U 1 U - -- -- -3 U 5 U 1 U 1 U 1.1-DCA 1 U 1 U 1 U 1 U - -2 U 11.6 < 2 - 11.6 2.7 1,4-Dioxane 3 U 3 U 3 U 2 U 2 U 2 U - -1 U MW-1D-112 96.0 120 62.4 72.7 62.4 21.0 98.8 62.4 35.8 33.7 1,1,1-TCA 33.7 - 120 300.3 310 310 380 389 320 148 1,1-DCE 288 209 206 206 - 389 45.7 51.4 1,1-DCA 63.0 77.0 70.9 45.2 45.7 34.0 23.8 23.8 - 77.0 18.1 339 326 1.4-Dioxane 430 422 439 290 326 279 187 187 - 439 98.9 MW-03-25.5 1.1.1-TCA 1 U 1 U 1 U 5 U 1 U 1.1-DCE 1 U 1 U 1 U 1 U 1 U - -- -- -1 U 1,1-DCA 5 U 1 U 1 U 1 U 1 U 1 U 1 U - -- -- -1 U 2 U 1 U 1,4-Dioxane 3 U 3 U 3 U 2 U 2 U 7.5 2.1 < 2 - 7.5 MW-04-38 35.5 26 1,1,1-TCA 25.0 26.0 27.9 21.3 104 11.8 32.3 11.8 - 104 58.2 338 210 1180 180 210 233 188 908 128 516 128 - 908 1.1-DCE 98.2 100 1,1-DCA 68.0 100 108 67.0 198 38.2 108 38.2 - 198 422 224 188 1,4-Dioxane 158 188 232 178 456 24.0 332 24.0 - 456 878 MW-09-25 5.5 1,1,1-TCA 6.0 5.5 4.6 1 U 9.4 4.9 5.4 < 1 - 9.4 2.1 168 160 150 170 181 193 179 143 170 143 - 193 74.0 1,1-DCE 9.6 10.5 10.9 1,1-DCA 8.0 12.0 10.5 8.5 11.1 6.1 6.1 - 12.0 4.0 73.9 70 1,4-Dioxane 71.0 69.0 70.0 98.0 54.0 96.0 59.0 54.0 - 98.0 29.9 MW-16-50 24.657 29.400 12.000 1,1,1-TCA 41,000 30,000 29,400 30,500 15,000 14,700 12,000 - 41,000 7,410 14,153 15,700 14.000 17.900 19.400 16.400 15.700 4.670 - 19.400 6.660 1.1-DCE 11.000 4.670 5,790 4,300 1,1-DCA 5,350 4,300 14,000 3,600 2,050 3,850 5,910 6,820 2,050 - 14,000 1,787 1,740 1,4-Dioxane 2,050 1,740 2,260 2,840 1,570 451 1,600 451 - 2,840 903 MW-16D-100 29.4 28.9 1,1,1-TCA 33.0 29.0 23.8 21.3 28.9 44.3 25.6 21.3 - 44.3 27.9 188 191 150 130 193 155 191 209 130 - 288 182 1.1-DCE 288 57.6 54.0 55.0 59.7 54.0 43.0 58.0 90.0 54.0 43.0 - 90.0 1,1-DCA 49.0 225 225 1,4-Dioxane 215 189 246 218 232 251 225 189 - 251 92.1 MW-18-56 1 U 1.1.1-TCA 5 U 1 U 1 U 1 U 1 U 1 U - -- -- -1 U 1,1-DCE 5 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1,1-DCA 5 U 1 U 1 U 1 U 1 U 1 U - -- -- -1.4-Dioxane 3 U 3 U 3 U 2 U 2 U 2 U 2 U - -- -- -1 U MW-21D-102 4.1 4.4 8.0 5.7 1 U 1,1,1-TCA 5.0 4.1 2.8 3.2 2.1 2.1 - 8.0 90.7 90.0 90.0 90.0 102 82.4 76.5 105 89.2 76.5 - 105 20.5 1,1-DCE 10.8 10.4 12.0 14.0 11.9 10.1 10.4 1.1-DCA 8.3 8.8 8.3 - 14.0 2.8 85.3 80.0 1,4-Dioxane 84.0 82.0 0.08 70.0 77.0 138 66.0 66.0 - 138 19.8 MW-23D-92 27.9 27.3 1,1,1-TCA 36.0 31.0 28.6 21.3 24.7 26.5 27.3 21.3 - 36.0 25.7 131 120 110 131 101 157 198 120.0 101 - 198 138 1.1-DCE 101 58.9 32.0 1,1-DCA 229 32.0 33.0 26.0 29.0 28.0 35.0 26.0 - 229 36.9 1.4-Dioxane 149 149 149 130 186 165 132 151 131 130 - 186 131 MW-24D-128

62.0

1,500

61.0

393

48.7

1,520

58.0

470

34.1

1,190

47.0

433

43.4

1,510

57.0

60.9

106

657

2,640

53.3

2,100

93.0

728

51.8

70.6

502

1,723

53.3

61.0

470

1,520

34.1 - 62.0

47.0 - 106

342 - 728

1,190 - 2,640

28.0

68.2

452

1,280

60.0

1,600

72.0

342

1.1.1-TCA

1,1-DCE

1,1-DCA

1.4-Dioxane

a/ U = not detected at a concentration above the method reporting limit All concentrations in micrograms per liter.

Table 5

Statistical Summary for Primary VOCs HydraSleeve Field Demonstration Former Kop-Flex Facility Site Hanover, Maryland

Contiuent of Concern	Instances Where Conventional Samples > HydraSleeve	Instances Where Conventional Samples < HydraSleeve	Instances Where Previous Samples = HydraSleeve Sample	Tarone-Ware Two-Sample Test (a)	Median Relative Percent Difference (b,c)	Evaluation Conclusion (d)
1,1,1-Trichloroethane	7	1	0	84.3%	41.5%	Conventional > HydraSleeve
1,1-Dichloroethane	7	1	0	91.8%	20.4%	Conventional = HydraSleeve
1,1-Dichloroethene	6	2	0	93.3%	23.7%	Conventional = HydraSleeve
1,4-Dioxane	9	2	0	91.0%	34.0%	Conventional ≈ HydraSleeve

a/ Value is the confidence that the sample populations are statistically similar. Values below 90 % are gray-shaded indicating that the two populations compared are statistically different.

b/ A positive value indicates the mean concentrations in samples collected using conventional methods are greater than the concentrations in HydraSleeve samples.

c/ Values between -25 and 25 indicate the sample populations are similar.

Vaules less than -25 and greater than 25, and gray-shaded indicate the sample populations are different.

d/Qualitative holistic statement regarding the similarity in the sample results based on an assessment of the statistical and quantitative comparative tests.

Enclosure A – Laboratory Analytical Reports for HydraSleeve Groundwater Samples (March 2016)

March 29, 2016

Eric Johnson WSP Environmental Strategies 11190 Sunrise Valley Dr. Suite #300 Reston, VA 20191

RE: Project: KOP-FLEX 3705-29 Pace Project No.: 92290859

Dear Eric Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on March 22, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Godwin

kevin.godwin@pacelabs.com

Project Manager

X ~ Dod-

Enclosures

cc: Keith Green, WSP Environmental Strategies

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92290859001	MW-100-HS	Water	03/21/16 07:45	03/22/16 09:40
92290859002	MW-18-56-HS	Water	03/21/16 08:00	03/22/16 09:40
92290859003	MW-03-25.5-HS	Water	03/21/16 08:30	03/22/16 09:40
92290859004	MW-23D-92-HS	Water	03/21/16 09:05	03/22/16 09:40
92290859005	MW-21D-102-HS	Water	03/21/16 10:00	03/22/16 09:40
92290859006	MW-1D-112-HS	Water	03/21/16 10:15	03/22/16 09:40
92290859007	MW-01-33-HS	Water	03/21/16 10:35	03/22/16 09:40
92290859008	MW-04-38-HS	Water	03/21/16 10:48	03/22/16 09:40
92290859009	MW-09-25-HS	Water	03/21/16 12:02	03/22/16 09:40
92290859010	MW-16-50-HS	Water	03/21/16 12:15	03/22/16 09:40
92290859011	MW-16D-100-HS	Water	03/21/16 12:35	03/22/16 09:40
92290859012	TRIP BLANKS	Water	03/21/16 00:00	03/22/16 09:40
92290859013	EB-032116	Water	03/21/16 16:15	03/22/16 09:40

SAMPLE ANALYTE COUNT

Project:

KOP-FLEX 3705-29

Pace Project No.: 92290859

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92290859001	MW-100-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859002	MW-18-56-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859003	MW-03-25.5-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859004	MW-23D-92-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859005	MW-21D-102-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859006	MW-1D-112-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859007	MW-01-33-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859008	MW-04-38-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859009	MW-09-25-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859010	MW-16-50-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859011	MW-16D-100-HS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859012	TRIP BLANKS	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C
92290859013	EB-032116	EPA 8260	NB	64	PASI-C
		EPA 8260B Mod.	DLK	3	PASI-C

(704)875-9092

ANALYTICAL RESULTS

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-100-HS	Lab ID: 922	90859001	Collected: 03/21/1	16 07:45	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV Low Level	Analytical Met	nod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/25/16 04:1	5 67-64-1	
Benzene	ND	ug/L	1.0	1		03/25/16 04:1	5 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 04:1	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 04:1	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 04:1	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 04:1	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 04:1	5 74-83-9	
-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 04:1	5 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 04:1	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 04:1	5 108-90-7	
hloroethane	ND	ug/L	1.0	1		03/25/16 04:1	5 75-00-3	
Chloroform	ND	ug/L	1.0	1		03/25/16 04:1		
Chloromethane	ND	ug/L	1.0	1		03/25/16 04:1		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 04:1		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 04:1		
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		03/25/16 04:1		
bibromochloromethane	ND	ug/L	1.0	1		03/25/16 04:1		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		03/25/16 04:1		
bibromomethane	ND	ug/L	1.0	1		03/25/16 04:1		
.2-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 04:1		
,3-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 04:1		
,4-Dichlorobenzene	ND ND	ug/L	1.0	1		03/25/16 04:1		
ichlorodifluoromethane	ND ND	ug/L	1.0	1		03/25/16 04:1		
,1-Dichloroethane	ND ND	ug/L	1.0	1		03/25/16 04:1		
,2-Dichloroethane	ND ND	ug/L ug/L	1.0	1		03/25/16 04:1		
,2-Dichloroethane ,1-Dichloroethene	ND ND		1.0	1		03/25/16 04:1		
•	ND ND	ug/L	1.0	1		03/25/16 04.1		
is-1,2-Dichloroethene		ug/L		1				
ans-1,2-Dichloroethene	ND	ug/L	1.0			03/25/16 04:1		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 04:1		
,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 04:1		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 04:1		
,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 04:1		
s-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-01-5	
ans-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-02-6	
iisopropyl ether	ND	ug/L	1.0	1		03/25/16 04:1		
,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/25/16 04:1		
thylbenzene	ND	ug/L	1.0	1		03/25/16 04:1		
exachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 04:1		
-Hexanone	ND	ug/L	5.0	1		03/25/16 04:1		
-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 04:1		
lethylene Chloride	ND	ug/L	2.0	1		03/25/16 04:1		
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/25/16 04:1		
lethyl-tert-butyl ether	ND	ug/L	1.0	1		03/25/16 04:1		
aphthalene	ND	ug/L	1.0	1		03/25/16 04:1	5 91-20-3	
tyrene	ND	ug/L	1.0	1		03/25/16 04:1		
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 04:1	5 630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 04:1	5 79-34-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-100-HS	Lab ID: 922	90859001	Collected: 03/21/1	6 07:45	Received: 0	3/22/16 09:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 04:15	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 04:15	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 04:15	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 04:15	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/25/16 04:15	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 04:15	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 04:15	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 04:15	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 04:15	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 04:15	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 04:15	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 04:15	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 04:15	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 04:15	95-47-6	
Surrogates		Ü						
4-Bromofluorobenzene (S)	94	%	70-130	1		03/25/16 04:15	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130	1		03/25/16 04:15	17060-07-0	
Toluene-d8 (S)	97	%	70-130	1		03/25/16 04:15	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		03/22/16 19:41	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	50-150	1		03/22/16 19:41	17060-07-0	
Toluene-d8 (S)	101	%	50-150	1		03/22/16 19:41	2037-26-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-18-56-HS	Lab ID: 922	90859002	Collected: 03/21/1	6 08:00	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Met	hod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/25/16 02:30	6 67-64-1	
Benzene	ND	ug/L	1.0	1		03/25/16 02:30	6 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 02:30	6 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 02:30	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 02:30	6 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 02:30	6 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 02:30	6 74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 02:30	6 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 02:30	6 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 02:30		
Chloroethane	ND	ug/L	1.0	1		03/25/16 02:30		
Chloroform	ND	ug/L	1.0	1		03/25/16 02:30		
Chloromethane	ND	ug/L	1.0	1		03/25/16 02:30		
2-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 02:30		
4-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 02:30		
1,2-Dibromo-3-chloropropane	ND ND	ug/L	2.0	1		03/25/16 02:30		
Dibromochloromethane	ND ND	ug/L ug/L	1.0	1		03/25/16 02:30		
,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	1.0	1		03/25/16 02:30		
Dibromomethane	ND ND		1.0	1		03/25/16 02:30		
		ug/L		1		03/25/16 02:30		
I,2-Dichlorobenzene	ND	ug/L	1.0					
,3-Dichlorobenzene	ND	ug/L	1.0	1 1		03/25/16 02:30		
,4-Dichlorobenzene	ND	ug/L	1.0			03/25/16 02:30		
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/25/16 02:30		
I,1-Dichloroethane	ND	ug/L	1.0	1		03/25/16 02:30		
1,2-Dichloroethane	ND	ug/L	1.0	1		03/25/16 02:30		
1,1-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:30		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:30		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:30		
1,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:30		
1,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:30		
2,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:30		
1,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:30		
sis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:30	6 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:30	6 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		03/25/16 02:30	5 108-20-3	
I,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/25/16 02:30	6 123-91-1	
Ethylbenzene	ND	ug/L	1.0	1		03/25/16 02:30	6 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 02:30	87-68-3	
?-Hexanone	ND	ug/L	5.0	1		03/25/16 02:30	5 591-78-6	
o-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 02:30	6 99-87-6	
Methylene Chloride	ND	ug/L	2.0	1		03/25/16 02:30	6 75-09-2	
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/25/16 02:30		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		03/25/16 02:30		
Naphthalene	ND	ug/L	1.0	1		03/25/16 02:30	6 91-20-3	
Styrene	ND	ug/L	1.0	1		03/25/16 02:30		
I,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 02:30		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 02:30		

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-18-56-HS	Lab ID: 9229	90859002	Collected: 03/21/1	6 08:00	Received: 0	3/22/16 09:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 02:36	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 02:36	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:36	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:36	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/25/16 02:36	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 02:36	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 02:36	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 02:36	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 02:36	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 02:36	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 02:36	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 02:36	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 02:36	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 02:36	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	101	%	70-130	1		03/25/16 02:36		
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		03/25/16 02:36	17060-07-0	
Toluene-d8 (S)	109	%	70-130	1		03/25/16 02:36	2037-26-5	
B260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogat es	ND	ug/L	2.0	1		03/22/16 19:59	123-91-1	
1,2-Dichloroethane-d4 (S)	103	%	50-150	1		03/22/16 19:59	17060-07-0	
Toluene-d8 (S)	103	%	50-150	1		03/22/16 19:59	2037-26-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-03-25.5-HS	Lab ID: 922	90859003	Collected: 03/21/1	6 08:30	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV Low Level	Analytical Met	hod: EPA 82	260					
cetone	ND	ug/L	25.0	1		03/25/16 02:52	2 67-64-1	
Senzene	ND	ug/L	1.0	1		03/25/16 02:52	2 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 02:52	2 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 02:52	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 02:52	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 02:52	2 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 02:52	2 74-83-9	
-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 02:52	2 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 02:52		
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 02:52		
Chloroethane	ND	ug/L	1.0	1		03/25/16 02:52		
Chloroform	ND	ug/L	1.0	1		03/25/16 02:52		
Chloromethane	ND	ug/L	1.0	1		03/25/16 02:52		
-Chlorotoluene	ND ND	ug/L	1.0	1		03/25/16 02:52		
-Chlorotoluene	ND ND	ug/L ug/L	1.0	1		03/25/16 02:52		
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1 1		03/25/16 02:52		
bibromochloromethane	ND	ug/L	1.0			03/25/16 02:52		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		03/25/16 02:52		
Dibromomethane	ND	ug/L	1.0	1		03/25/16 02:52		
,2-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:52		
,3-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:52		
,4-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:52		
ichlorodifluoromethane	ND	ug/L	1.0	1		03/25/16 02:52		
,1-Dichloroethane	ND	ug/L	1.0	1		03/25/16 02:52		
,2-Dichloroethane	ND	ug/L	1.0	1		03/25/16 02:52	2 107-06-2	
,1-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:52	2 75-35-4	
is-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:52	2 156-59-2	
ans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:52		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:52	2 78-87-5	
,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:52	2 142-28-9	
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:52	2 594-20-7	
,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:52	2 563-58-6	
is-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:52	2 10061-01-5	
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:52	2 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		03/25/16 02:52	2 108-20-3	
,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/25/16 02:52	2 123-91-1	
thylbenzene	ND	ug/L	1.0	1		03/25/16 02:52		
lexachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 02:52		
-Hexanone	ND	ug/L	5.0	1		03/25/16 02:52		
-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 02:52		
lethylene Chloride	ND	ug/L	2.0	1		03/25/16 02:52		
-Methyl-2-pentanone (MIBK)	ND ND	ug/L	5.0	1		03/25/16 02:52		
Methyl-tert-butyl ether	ND ND	ug/L	1.0	1		03/25/16 02:52		
laphthalene	ND ND	•	1.0	1		03/25/16 02:52		
·		ug/L						
tyrene ,1,1,2-Tetrachloroethane	ND ND	ug/L	1.0 1.0	1		03/25/16 02:52 03/25/16 02:52		
	NII)	ug/L	1 ()	1		U3/25/16 U2·52	/ h3U=2U=6	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-03-25.5-HS	Lab ID: 922	90859003	Collected: 03/21/1	6 08:30	Received: 0	3/22/16 09:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 02:52	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 02:52	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:52	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:52	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/25/16 02:52	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 02:52	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 02:52	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 02:52	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 02:52	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 02:52	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 02:52	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 02:52	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 02:52	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 02:52	95-47-6	
Surrogates		_						
4-Bromofluorobenzene (S)	97	%	70-130	1		03/25/16 02:52	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130	1		03/25/16 02:52	17060-07-0	
Toluene-d8 (S)	104	%	70-130	1		03/25/16 02:52	2037-26-5	
3260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	3.2	ug/L	2.0	1		03/22/16 20:18	123-91-1	
1,2-Dichloroethane-d4 (S)	105	%	50-150	1		03/22/16 20:18	17060-07-0	
Toluene-d8 (S)	103	%	50-150	1		03/22/16 20:18	2037-26-5	

(704)875-9092

ANALYTICAL RESULTS

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-23D-92-HS	Lab ID:	92290859004	Collected: 03/21/16	09:05	Received: 0	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical	Method: EPA 82	260					
Acetone	NE) ug/L	25.0	1		03/25/16 04:3	2 67-64-1	
Benzene	4.4	4 ug/L	1.0	1		03/25/16 04:3	2 71-43-2	
Bromobenzene	NE) ug/L	1.0	1		03/25/16 04:3	2 108-86-1	
Bromochloromethane	NE) ug/L	1.0	1		03/25/16 04:3	2 74-97-5	
Bromodichloromethane	NE) ug/L	1.0	1		03/25/16 04:3	2 75-27-4	R1
Bromoform	NE	ug/L	1.0	1		03/25/16 04:3	2 75-25-2	
Bromomethane	NE) ug/L	2.0	1		03/25/16 04:3	2 74-83-9	M1,R1
2-Butanone (MEK)	NE	ug/L	5.0	1		03/25/16 04:3	2 78-93-3	
Carbon tetrachloride	NE	ug/L	1.0	1		03/25/16 04:3	2 56-23-5	R1
Chlorobenzene	NE	_	1.0	1		03/25/16 04:3	2 108-90-7	
Chloroethane	NE	_	1.0	1		03/25/16 04:3	2 75-00-3	R1
Chloroform	NE	•	1.0	1		03/25/16 04:3	2 67-66-3	
Chloromethane	NE	•	1.0	1		03/25/16 04:3	2 74-87-3	M1,R1
2-Chlorotoluene	NE	_	1.0	1		03/25/16 04:3	2 95-49-8	
4-Chlorotoluene	NE	_	1.0	1		03/25/16 04:3	2 106-43-4	
1,2-Dibromo-3-chloropropane	NE	_	2.0	1		03/25/16 04:3	2 96-12-8	
Dibromochloromethane	NE	0	1.0	1		03/25/16 04:3	2 124-48-1	
1,2-Dibromoethane (EDB)	NE	0	1.0	1		03/25/16 04:3	2 106-93-4	
Dibromomethane	NE	_	1.0	1		03/25/16 04:3	2 74-95-3	R1
1,2-Dichlorobenzene	NE	_	1.0	1		03/25/16 04:3		
1.3-Dichlorobenzene	NE	_	1.0	1		03/25/16 04:3		
1,4-Dichlorobenzene	NE	0	1.0	1		03/25/16 04:3		
Dichlorodifluoromethane	NE	0	1.0	1		03/25/16 04:3		M1,R1
1,1-Dichloroethane	39.0	_	1.0	1		03/25/16 04:3		,
1,2-Dichloroethane	1.9	_	1.0	1		03/25/16 04:3		
1,1-Dichloroethene	138	_	2.0	2		03/25/16 13:2		M1
cis-1,2-Dichloroethene	NE	0	1.0	1		03/25/16 04:3		
trans-1,2-Dichloroethene	NE	0	1.0	1		03/25/16 04:3		M1,R1
1,2-Dichloropropane	NE	_	1.0	1		03/25/16 04:3		R1
1,3-Dichloropropane	NE	_	1.0	1		03/25/16 04:3		
2,2-Dichloropropane	NE	_	1.0	1		03/25/16 04:3		
1,1-Dichloropropene	NE	0	1.0	1		03/25/16 04:3		
cis-1,3-Dichloropropene	NE	0	1.0	1		03/25/16 04:3		
trans-1,3-Dichloropropene	NE	_	1.0	1		03/25/16 04:3		
Diisopropyl ether	NE	_	1.0	1		03/25/16 04:3		R1
1,4-Dioxane (p-Dioxane)	NE		150	1		03/25/16 04:3		M1,R1
Ethylbenzene	NE	_	1.0	1		03/25/16 04:3		,
Hexachloro-1,3-butadiene	NE	•	1.0	1		03/25/16 04:3		
2-Hexanone	NE	•	5.0	1		03/25/16 04:3		
o-Isopropyltoluene	NE	•	1.0	1		03/25/16 04:3		
Methylene Chloride	NE	•	2.0	1		03/25/16 04:3		R1
4-Methyl-2-pentanone (MIBK)	NE NE	•	5.0	1		03/25/16 04:3		111
Methyl-tert-butyl ether	NE	•	1.0	1		03/25/16 04:3		R1
Naphthalene	NE	•	1.0	1		03/25/16 04:3		R1
Styrene	NE	•	1.0	1		03/25/16 04:3		111
1,1,1,2-Tetrachloroethane	NE NE	•	1.0	1		03/25/16 04:3		
			1 ()					

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-23D-92-HS	Lab ID: 9229	90859004	Collected: 03/21/1	6 09:05	Received: 0	3/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 04:32	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 04:32	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 04:32	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 04:32	120-82-1	
1,1,1-Trichloroethane	25.7	ug/L	1.0	1		03/25/16 04:32	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 04:32	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 04:32	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 04:32	75-69-4	R1
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 04:32	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 04:32	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 04:32	75-01-4	R1
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 04:32	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 04:32	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 04:32	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	98	%	70-130	1		03/25/16 04:32	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130	1		03/25/16 04:32	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		03/25/16 04:32	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	131	ug/L	5.0	2.5		03/22/16 20:36	123-91-1	
1,2-Dichloroethane-d4 (S)	105	%	50-150	2.5		03/22/16 20:36	17060-07-0	
Toluene-d8 (S)	104	%	50-150	2.5		03/22/16 20:36	2037-26-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-21D-102-HS	Lab ID: 922	90859005	Collected: 03/21/1	6 10:00	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level	Analytical Met	nod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/25/16 03:09	9 67-64-1	
Benzene	ND	ug/L	1.0	1		03/25/16 03:09	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 03:09	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 03:09	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 03:09	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 03:09	75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 03:09	74-83-9	
-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 03:09	78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 03:09		
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 03:09		
hloroethane	ND	ug/L	1.0	1		03/25/16 03:09		
Chloroform	ND	ug/L	1.0	1		03/25/16 03:09		
Chloromethane	ND	ug/L	1.0	1		03/25/16 03:09		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 03:09		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 03:09		
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		03/25/16 03:09		
bibromochloromethane	ND ND	ug/L	1.0	1		03/25/16 03:09		
,2-Dibromoethane (EDB)	ND ND	ug/L	1.0	1		03/25/16 03:09	-	
ibromomethane	ND ND	_	1.0	1		03/25/16 03:09		
.2-Dichlorobenzene		ug/L		1				
,	ND	ug/L	1.0			03/25/16 03:09		
,3-Dichlorobenzene	ND	ug/L	1.0	1 1		03/25/16 03:09		
,4-Dichlorobenzene	ND	ug/L	1.0			03/25/16 03:09		
vichlorodifluoromethane	ND	ug/L	1.0	1		03/25/16 03:09		
,1-Dichloroethane	2.8	ug/L	1.0	1		03/25/16 03:09		
,2-Dichloroethane	ND	ug/L	1.0	1		03/25/16 03:09		
,1-Dichloroethene	20.5	ug/L	1.0	1		03/25/16 03:09		
is-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:09		
ans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:09		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:09		
,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:09		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:09		
,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:09		
s-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:09		
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:09	9 10061-02-6	
iisopropyl ether	ND	ug/L	1.0	1		03/25/16 03:09	9 108-20-3	
,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/25/16 03:09	9 123-91-1	
thylbenzene	ND	ug/L	1.0	1		03/25/16 03:09	9 100-41-4	
exachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 03:09	9 87-68-3	
-Hexanone	ND	ug/L	5.0	1		03/25/16 03:09	9 591-78-6	
-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 03:09	99-87-6	
lethylene Chloride	ND	ug/L	2.0	1		03/25/16 03:09	75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/25/16 03:09	9 108-10-1	
lethyl-tert-butyl ether	ND	ug/L	1.0	1		03/25/16 03:09	1634-04-4	
aphthalene	ND	ug/L	1.0	1		03/25/16 03:09	91-20-3	
tyrene	ND	ug/L	1.0	1		03/25/16 03:09		
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 03:09		
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 03:09		

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-21D-102-HS	Lab ID: 922	90859005	Collected: 03/21/1	6 10:00	Received: 0	3/22/16 09:40 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 03:09	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 03:09	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:09	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:09	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/25/16 03:09	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 03:09	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 03:09	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 03:09	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 03:09	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 03:09	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 03:09	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 03:09	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 03:09	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 03:09	95-47-6	
Surrogates		Ü						
4-Bromofluorobenzene (S)	97	%	70-130	1		03/25/16 03:09	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130	1		03/25/16 03:09	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		03/25/16 03:09	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	19.8	ug/L	2.0	1		03/22/16 21:31	123-91-1	
1,2-Dichloroethane-d4 (S)	103	%	50-150	1		03/22/16 21:31	17060-07-0	
Toluene-d8 (S)	103	%	50-150	1		03/22/16 21:31	2037-26-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-1D-112-HS	Lab ID: 92	290859006	Collected: 03/21/1	16 10:15	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV Low Level	Analytical Me	thod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/28/16 19:5	5 67-64-1	
Benzene	ND	ug/L	1.0	1		03/28/16 19:5	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/28/16 19:5	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/28/16 19:5	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/28/16 19:5	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/28/16 19:5	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/28/16 19:5	74-83-9	
-Butanone (MEK)	ND	ug/L	5.0	1		03/28/16 19:5	78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/16 19:5		
Chlorobenzene	ND	ug/L	1.0	1		03/28/16 19:5		
Chloroethane	ND	ug/L	1.0	1		03/28/16 19:5		
Chloroform	ND	ug/L	1.0	1		03/28/16 19:5		
Chloromethane	ND	ug/L	1.0	1		03/28/16 19:5		
-Chlorotoluene	ND	ug/L	1.0	1		03/28/16 19:5		
-Chlorotoluene	ND ND	•	1.0	1		03/28/16 19:5		
,2-Dibromo-3-chloropropane	ND ND	ug/L	2.0	1		03/28/16 19:5		
• •	ND ND	ug/L	1.0	1		03/28/16 19:5		
ibromochloromethane		ug/L						
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		03/28/16 19:5		
bibromomethane	ND	ug/L	1.0	1		03/28/16 19:5		
,2-Dichlorobenzene	ND	ug/L	1.0	1		03/28/16 19:5		
,3-Dichlorobenzene	ND	ug/L	1.0	1		03/28/16 19:5		
,4-Dichlorobenzene	ND	ug/L	1.0	1		03/28/16 19:5		
ichlorodifluoromethane	ND	ug/L	1.0	1		03/28/16 19:5		
,1-Dichloroethane	18.1	ug/L	1.0	1		03/28/16 19:5		
,2-Dichloroethane	1.9	ug/L	1.0	1		03/28/16 19:5		
,1-Dichloroethene	148	ug/L	1.0	1		03/28/16 19:5		
is-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/16 19:5		
ans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/16 19:5	5 156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1		03/28/16 19:5	5 78-87-5	
,3-Dichloropropane	ND	ug/L	1.0	1		03/28/16 19:5	142-28-9	
,2-Dichloropropane	ND	ug/L	1.0	1		03/28/16 19:5	5 594-20-7	
,1-Dichloropropene	ND	ug/L	1.0	1		03/28/16 19:5	5 563-58-6	
is-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/16 19:5	10061-01-5	
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/16 19:5	5 10061-02-6	
iisopropyl ether	ND	ug/L	1.0	1		03/28/16 19:5	5 108-20-3	
,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/28/16 19:5	5 123-91-1	L2
thylbenzene	ND	ug/L	1.0	1		03/28/16 19:5	5 100-41-4	
exachloro-1,3-butadiene	ND	ug/L	1.0	1		03/28/16 19:5	5 87-68-3	
Hexanone	ND	ug/L	5.0	1		03/28/16 19:5	5 591-78-6	
-Isopropyltoluene	ND	ug/L	1.0	1		03/28/16 19:5		
lethylene Chloride	ND	ug/L	2.0	1		03/28/16 19:5		
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/16 19:5		
lethyl-tert-butyl ether	ND	ug/L	1.0	1		03/28/16 19:5		
aphthalene	ND	ug/L	1.0	1		03/28/16 19:5		
tyrene	ND ND	-	1.0	1		03/28/16 19:5		
•		ug/L						
,1,1,2-Tetrachloroethane	ND ND	ug/L ug/L	1.0 1.0	1 1		03/28/16 19:55 03/28/16 19:55		

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-1D-112-HS	Lab ID: 922	90859006	Collected: 03/21/1	6 10:15	Received: 0	3/22/16 09:40 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/28/16 19:55	127-18-4	
Toluene	ND	ug/L	1.0	1		03/28/16 19:55	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/28/16 19:55	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/28/16 19:55	120-82-1	
1,1,1-Trichloroethane	21.0	ug/L	1.0	1		03/28/16 19:55	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/16 19:55	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/28/16 19:55	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/16 19:55	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/16 19:55	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/28/16 19:55	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/28/16 19:55	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/28/16 19:55	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/28/16 19:55	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/28/16 19:55	95-47-6	
Surrogates		Ü						
4-Bromofluorobenzene (S)	97	%	70-130	1		03/28/16 19:55	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		03/28/16 19:55	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		03/28/16 19:55	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	98.9	ug/L	5.0	2.5		03/22/16 21:49	123-91-1	
1,2-Dichloroethane-d4 (S)	107	%	50-150	2.5		03/22/16 21:49	17060-07-0	
Toluene-d8 (S)	103	%	50-150	2.5		03/22/16 21:49	2037-26-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-01-33-HS	Lab ID: 922	90859007	Collected: 03/21/1	6 10:35	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Met	hod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/25/16 03:29	5 67-64-1	
Benzene	ND	ug/L	1.0	1		03/25/16 03:2	5 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 03:25	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 03:25	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 03:29	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 03:2	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 03:2	5 74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 03:2	5 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 03:2	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 03:2		
Chloroethane	ND	ug/L	1.0	1		03/25/16 03:2		
Chloroform	ND	ug/L	1.0	1		03/25/16 03:2		
Chloromethane	ND	ug/L	1.0	1		03/25/16 03:2		
2-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 03:2		
4-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 03:25		
1,2-Dibromo-3-chloropropane	ND ND	ug/L	2.0	1		03/25/16 03:25		
Dibromochloromethane	ND ND	ug/L ug/L	1.0	1		03/25/16 03:25		
,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	1.0	1		03/25/16 03:25		
Dibromomethane	ND ND		1.0	1		03/25/16 03:25		
		ug/L		1		03/25/16 03:25		
I,2-Dichlorobenzene	ND	ug/L	1.0					
,3-Dichlorobenzene	ND	ug/L	1.0	1 1		03/25/16 03:25		
,4-Dichlorobenzene	ND	ug/L	1.0			03/25/16 03:25		
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/25/16 03:25		
I,1-Dichloroethane	ND	ug/L	1.0	1		03/25/16 03:2		
1,2-Dichloroethane	ND	ug/L	1.0	1		03/25/16 03:2		
1,1-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:2		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:2		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:2		
1,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:2		
1,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:2		
2,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:2		
1,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:2	5 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:2	5 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		03/25/16 03:2	5 108-20-3	
I,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/25/16 03:2	5 123-91-1	
Ethylbenzene	ND	ug/L	1.0	1		03/25/16 03:2	5 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 03:2	5 87-68-3	
?-Hexanone	ND	ug/L	5.0	1		03/25/16 03:2	5 591-78-6	
o-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 03:25	5 99-87-6	
Methylene Chloride	ND	ug/L	2.0	1		03/25/16 03:29	5 75-09-2	
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/25/16 03:29	5 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		03/25/16 03:2		
Naphthalene	ND	ug/L	1.0	1		03/25/16 03:2		
Styrene	ND	ug/L	1.0	1		03/25/16 03:2		
I,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 03:2		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 03:2		

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-01-33-HS	Lab ID: 9229	90859007	Collected: 03/21/1	6 10:35	Received: 0	3/22/16 09:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	od: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 03:25	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 03:25	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:25	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:25	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/25/16 03:25	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 03:25	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 03:25	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 03:25	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 03:25	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 03:25	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 03:25	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 03:25	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 03:25	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 03:25	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	100	%	70-130	1		03/25/16 03:25	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130	1		03/25/16 03:25	17060-07-0	
Toluene-d8 (S)	76	%	70-130	1		03/25/16 03:25	2037-26-5	
8260 MSV SIM	Analytical Meth	od: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	2.3	ug/L	2.0	1		03/22/16 22:08	123-91-1	
1,2-Dichloroethane-d4 (S)	108	%	50-150	1		03/22/16 22:08	17060-07-0	
Toluene-d8 (S)	103	%	50-150	1		03/22/16 22:08	2037-26-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-04-38-HS	Lab ID: 922	90859008	Collected: 03/21/1	6 10:48	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level	Analytical Met	hod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/25/16 03:42	2 67-64-1	
Benzene	ND	ug/L	1.0	1		03/25/16 03:42	2 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 03:42	2 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 03:42	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 03:42	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 03:42	2 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 03:42	2 74-83-9	
-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 03:42	2 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 03:42		
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 03:42		
Chloroethane	ND	ug/L	1.0	1		03/25/16 03:42		
Chloroform	1.6	ug/L	1.0	1		03/25/16 03:42		
Chloromethane	ND	ug/L	1.0	1		03/25/16 03:42		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 03:42		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 03:42		
,2-Dibromo-3-chloropropane	ND ND	ug/L	2.0	1		03/25/16 03:42		
ibromochloromethane	ND ND	ug/L ug/L	1.0	1		03/25/16 03:42		
,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	1.0	1		03/25/16 03:42		
bibromomethane	ND ND	ug/L ug/L	1.0	1		03/25/16 03:42		
.2-Dichlorobenzene	ND	-	1.0	1		03/25/16 03:42		
,		ug/L		1				
,3-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:42		
,4-Dichlorobenzene	ND	ug/L	1.0			03/25/16 03:42		
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/25/16 03:42		
,1-Dichloroethane	422	ug/L	10.0	10		03/25/16 13:06		
,2-Dichloroethane	10.1	ug/L	1.0	1		03/25/16 03:42		
,1-Dichloroethene	1180	ug/L	10.0	10		03/25/16 13:06		
is-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:42		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:42		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:42		
,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:42		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:42		
,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:42		
is-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:42		
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:42		
iisopropyl ether	ND	ug/L	1.0	1		03/25/16 03:42		
,4-Dioxane (p-Dioxane)	984	ug/L	150	1		03/25/16 03:42		
thylbenzene	ND	ug/L	1.0	1		03/25/16 03:42	2 100-41-4	
lexachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 03:42	2 87-68-3	
-Hexanone	ND	ug/L	5.0	1		03/25/16 03:42	2 591-78-6	
-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 03:42	2 99-87-6	
lethylene Chloride	ND	ug/L	2.0	1		03/25/16 03:42	2 75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/25/16 03:42	2 108-10-1	
lethyl-tert-butyl ether	ND	ug/L	1.0	1		03/25/16 03:42	2 1634-04-4	
laphthalene	ND	ug/L	1.0	1		03/25/16 03:42	91-20-3	
tyrene	ND	ug/L	1.0	1		03/25/16 03:42	2 100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 03:42	2 630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 03:42		

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-04-38-HS	Lab ID: 922	90859008	Collected: 03/21/1	6 10:48	Received: 0	3/22/16 09:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	5.3	ug/L	1.0	1		03/25/16 03:42	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 03:42	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:42	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:42	120-82-1	
1,1,1-Trichloroethane	58.2	ug/L	1.0	1		03/25/16 03:42	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 03:42	79-00-5	
Trichloroethene	10.9	ug/L	1.0	1		03/25/16 03:42	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 03:42	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 03:42	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 03:42	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 03:42	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 03:42	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 03:42	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 03:42	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	101	%	70-130	1		03/25/16 03:42	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130	1		03/25/16 03:42	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		03/25/16 03:42	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	878	ug/L	20.0	10		03/24/16 09:40	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	50-150	5		03/22/16 22:27	17060-07-0	
Toluene-d8 (S)	103	%	50-150	5		03/22/16 22:27	2037-26-5	

Project: KOP-FLEX 3705-29

Date: 03/29/2016 04:29 PM

Sample: MW-09-25-HS	Lab ID: 922	90859009	Collected: 03/21/1	6 12:02	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level	Analytical Met	hod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/25/16 03:59	9 67-64-1	
Benzene	ND	ug/L	1.0	1		03/25/16 03:59	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 03:59	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 03:59	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 03:59	9 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 03:59	75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 03:59	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 03:59	78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 03:59	9 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 03:59		
Chloroethane	ND	ug/L	1.0	1		03/25/16 03:59		
Chloroform	ND	ug/L	1.0	1		03/25/16 03:59		
Chloromethane	ND	ug/L	1.0	1		03/25/16 03:59		
2-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 03:59		
4-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 03:59		
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		03/25/16 03:59		
Dibromochloromethane	ND ND	ug/L	1.0	1		03/25/16 03:59		
,2-Dibromoethane (EDB)	ND ND	ug/L	1.0	1		03/25/16 03:59		
		•		1		03/25/16 03:59		
Dibromomethane	ND	ug/L	1.0					
,2-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:59		
,3-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:59		
,4-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:59		
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/25/16 03:59		
1,1-Dichloroethane	4.0	ug/L	1.0	1		03/25/16 03:59		
,2-Dichloroethane	ND	ug/L	1.0	1		03/25/16 03:59		
1,1-Dichloroethene	74.0	ug/L	1.0	1		03/25/16 03:59		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:59		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 03:59		
1,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:59		
,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:59	9 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 03:59	9 594-20-7	
,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:59	9 563-58-6	
sis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:59	9 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 03:59	9 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		03/25/16 03:59	9 108-20-3	
,4-Dioxane (p-Dioxane)	418	ug/L	150	1		03/25/16 03:59		
Ethylbenzene ,	ND	ug/L	1.0	1		03/25/16 03:59	9 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 03:59	9 87-68-3	
?-Hexanone	ND	ug/L	5.0	1		03/25/16 03:59		
o-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 03:59		
Methylene Chloride	ND	ug/L	2.0	1		03/25/16 03:59		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/25/16 03:59		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		03/25/16 03:59		
Naphthalene	ND ND	ug/L ug/L	1.0	1		03/25/16 03:59		
•	ND ND	•		1		03/25/16 03:59		
Styrene		ug/L	1.0					
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	1.0 1.0	1 1		03/25/16 03:59 03/25/16 03:59		

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-09-25-HS	Lab ID: 9229	90859009	Collected: 03/21/1	6 12:02	Received: 0	3/22/16 09:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 03:59	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 03:59	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:59	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 03:59	120-82-1	
1,1,1-Trichloroethane	2.1	ug/L	1.0	1		03/25/16 03:59	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 03:59	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 03:59	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 03:59	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 03:59	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 03:59	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 03:59	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 03:59	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 03:59	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 03:59	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	96	%	70-130	1		03/25/16 03:59	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		03/25/16 03:59	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		03/25/16 03:59	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogat es	29.9	ug/L	2.0	1		03/22/16 22:45	123-91-1	
1,2-Dichloroethane-d4 (S)	106	%	50-150	1		03/22/16 22:45	17060-07-0	
Toluene-d8 (S)	103	%	50-150	1		03/22/16 22:45	2037-26-5	

ANALYTICAL RESULTS

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-16-50-HS	Lab ID: 922	90859010	Collected: 03/21/1	16 12:15	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV Low Level	Analytical Met	nod: EPA 82	260					
Acetone	ND	ug/L	1250	50		03/28/16 20:45	5 67-64-1	
Benzene	ND	ug/L	50.0	50		03/28/16 20:45	71-43-2	
Bromobenzene	ND	ug/L	50.0	50		03/28/16 20:45	5 108-86-1	
Bromochloromethane	ND	ug/L	50.0	50		03/28/16 20:45	74-97-5	
Bromodichloromethane	ND	ug/L	50.0	50		03/28/16 20:45	5 75-27-4	
Bromoform	ND	ug/L	50.0	50		03/28/16 20:45	5 75-25-2	
Bromomethane	ND	ug/L	100	50		03/28/16 20:45	74-83-9	
-Butanone (MEK)	ND	ug/L	250	50		03/28/16 20:45	78-93-3	
Carbon tetrachloride	ND	ug/L	50.0	50		03/28/16 20:45	5 56-23-5	
Chlorobenzene	ND	ug/L	50.0	50		03/28/16 20:45	5 108-90-7	
Chloroethane	176	ug/L	50.0	50		03/28/16 20:45		
Chloroform	ND	ug/L	50.0	50		03/28/16 20:45		
Chloromethane	ND	ug/L	50.0	50		03/28/16 20:45		
-Chlorotoluene	ND	ug/L	50.0	50		03/28/16 20:45		
-Chlorotoluene	ND	ug/L	50.0	50		03/28/16 20:45		
,2-Dibromo-3-chloropropane	ND	ug/L	100	50		03/28/16 20:45		
Dibromochloromethane	ND ND	ug/L	50.0	50		03/28/16 20:45		
,2-Dibromoethane (EDB)	ND	ug/L	50.0	50		03/28/16 20:45	_	
bibromomethane	ND ND	ug/L	50.0	50		03/28/16 20:45		
.2-Dichlorobenzene	ND ND	ug/L ug/L	50.0	50		03/28/16 20:45		
,3-Dichlorobenzene	ND ND		50.0	50		03/28/16 20:45		
,3-Dichlorobenzene ,4-Dichlorobenzene	ND ND	ug/L	50.0	50 50		03/28/16 20:45		
)ichlorodifluoromethane	ND ND	ug/L	50.0	50 50		03/28/16 20:45		
		ug/L		50 50				
,1-Dichloroethane	5350	ug/L	50.0			03/28/16 20:45		
,2-Dichloroethane	ND	ug/L	50.0	50		03/28/16 20:45		
,1-Dichloroethene	6660	ug/L	50.0	50		03/28/16 20:45		
is-1,2-Dichloroethene	ND	ug/L	50.0	50		03/28/16 20:45		
ans-1,2-Dichloroethene	ND	ug/L	50.0	50		03/28/16 20:45		
,2-Dichloropropane	ND	ug/L	50.0	50		03/28/16 20:45		
,3-Dichloropropane	ND	ug/L	50.0	50		03/28/16 20:45		
,2-Dichloropropane	ND	ug/L	50.0	50		03/28/16 20:45		
,1-Dichloropropene	ND	ug/L	50.0	50		03/28/16 20:45		
is-1,3-Dichloropropene	ND	ug/L	50.0	50		03/28/16 20:45		
ans-1,3-Dichloropropene	ND	ug/L	50.0	50		03/28/16 20:45		
iisopropyl ether	ND	ug/L	50.0	50		03/28/16 20:45		
,4-Dioxane (p-Dioxane)	ND	ug/L	7500	50		03/28/16 20:45		L2
thylbenzene	ND	ug/L	50.0	50		03/28/16 20:45		
exachloro-1,3-butadiene	ND	ug/L	50.0	50		03/28/16 20:45	5 87-68-3	
-Hexanone	ND	ug/L	250	50		03/28/16 20:45	5 591-78-6	
-Isopropyltoluene	ND	ug/L	50.0	50		03/28/16 20:45	5 99-87-6	
lethylene Chloride	ND	ug/L	100	50		03/28/16 20:45	75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	250	50		03/28/16 20:45	5 108-10-1	
lethyl-tert-butyl ether	ND	ug/L	50.0	50		03/28/16 20:45	5 1634-04-4	
laphthalene	ND	ug/L	50.0	50		03/28/16 20:45	5 91-20-3	
tyrene	ND	ug/L	50.0	50		03/28/16 20:45	5 100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	50.0	50		03/28/16 20:45	5 630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	50.0	50		03/28/16 20:45	5 79-34-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-16-50-HS	Lab ID: 922	90859010	Collected: 03/21/1	6 12:15	Received: 0	3/22/16 09:40 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	50.0	50		03/28/16 20:45	127-18-4	
Toluene	ND	ug/L	50.0	50		03/28/16 20:45	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	50.0	50		03/28/16 20:45	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	50.0	50		03/28/16 20:45	120-82-1	
1,1,1-Trichloroethane	7410	ug/L	50.0	50		03/28/16 20:45	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	50.0	50		03/28/16 20:45	79-00-5	
Trichloroethene	68.2	ug/L	50.0	50		03/28/16 20:45	79-01-6	
Trichlorofluoromethane	ND	ug/L	50.0	50		03/28/16 20:45	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	50.0	50		03/28/16 20:45	96-18-4	
Vinyl acetate	ND	ug/L	100	50		03/28/16 20:45	108-05-4	
Vinyl chloride	ND	ug/L	50.0	50		03/28/16 20:45	75-01-4	
Xylene (Total)	ND	ug/L	100	50		03/28/16 20:45	1330-20-7	
m&p-Xylene	ND	ug/L	100	50		03/28/16 20:45	179601-23-1	
o-Xylene	ND	ug/L	50.0	50		03/28/16 20:45	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	98	%	70-130	50		03/28/16 20:45	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130	50		03/28/16 20:45	17060-07-0	
Toluene-d8 (S)	99	%	70-130	50		03/28/16 20:45	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	903	ug/L	50.0	25		03/22/16 23:04	123-91-1	
1,2-Dichloroethane-d4 (S)	102	%	50-150	25		03/22/16 23:04	17060-07-0	
Toluene-d8 (S)	101	%	50-150	25		03/22/16 23:04	2037-26-5	

ANALYTICAL RESULTS

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-16D-100-HS	Lab ID: 922	90859011	Collected: 03/21/1	16 12:35	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level	Analytical Met	hod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/28/16 19:39	9 67-64-1	
Benzene	ND	ug/L	1.0	1		03/28/16 19:39	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/28/16 19:39	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/28/16 19:39	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/28/16 19:39	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/28/16 19:39	9 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/28/16 19:39	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/28/16 19:39	78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/28/16 19:39	9 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/28/16 19:39	9 108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/28/16 19:39		
Chloroform	ND	ug/L	1.0	1		03/28/16 19:39		
Chloromethane	ND	ug/L	1.0	1		03/28/16 19:39		
2-Chlorotoluene	ND	ug/L	1.0	1		03/28/16 19:39		
-Chlorotoluene	ND	ug/L	1.0	1		03/28/16 19:39		
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		03/28/16 19:3		
Dibromochloromethane	ND ND	ug/L ug/L	1.0	1		03/28/16 19:3		
,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	1.0	1		03/28/16 19:3	_	
)ibromomethane	ND		1.0	1		03/28/16 19:3		
.2-Dichlorobenzene		ug/L		1				
,	ND	ug/L	1.0			03/28/16 19:39		
,3-Dichlorobenzene	ND	ug/L	1.0	1 1		03/28/16 19:39		
,4-Dichlorobenzene	ND	ug/L	1.0			03/28/16 19:39		
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/28/16 19:39		
,1-Dichloroethane	59.7	ug/L	1.0	1		03/28/16 19:39		
,2-Dichloroethane	2.8	ug/L	1.0	1		03/28/16 19:39		
,1-Dichloroethene	182	ug/L	2.0	2		03/25/16 05:0		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/16 19:39		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/28/16 19:39		
,2-Dichloropropane	ND	ug/L	1.0	1		03/28/16 19:39		
,3-Dichloropropane	ND	ug/L	1.0	1		03/28/16 19:39		
2,2-Dichloropropane	ND	ug/L	1.0	1		03/28/16 19:39		
,1-Dichloropropene	ND	ug/L	1.0	1		03/28/16 19:39		
sis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/16 19:39		
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/28/16 19:39	9 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		03/28/16 19:39	108-20-3	
,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/28/16 19:39	9 123-91-1	L2
Ethylbenzene	ND	ug/L	1.0	1		03/28/16 19:39	9 100-41-4	
lexachloro-1,3-butadiene	ND	ug/L	1.0	1		03/28/16 19:39	9 87-68-3	
-Hexanone	ND	ug/L	5.0	1		03/28/16 19:39	9 591-78-6	
-Isopropyltoluene	ND	ug/L	1.0	1		03/28/16 19:39	9 99-87-6	
Methylene Chloride	ND	ug/L	2.0	1		03/28/16 19:39	75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/28/16 19:39		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		03/28/16 19:39	9 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		03/28/16 19:39		
Styrene	ND	ug/L	1.0	1		03/28/16 19:39		
I,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/16 19:39		
I,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/28/16 19:39		

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: MW-16D-100-HS	Lab ID: 922	90859011	Collected: 03/21/1	6 12:35	Received: 0	3/22/16 09:40 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/28/16 19:39	127-18-4	
Toluene	ND	ug/L	1.0	1		03/28/16 19:39	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/28/16 19:39	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/28/16 19:39	120-82-1	
1,1,1-Trichloroethane	27.9	ug/L	1.0	1		03/28/16 19:39	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/28/16 19:39	79-00-5	
Trichloroethene	1.1	ug/L	1.0	1		03/28/16 19:39	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/28/16 19:39	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/28/16 19:39	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/28/16 19:39	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/28/16 19:39	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/28/16 19:39	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/28/16 19:39	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/28/16 19:39	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	96	%	70-130	1		03/28/16 19:39	460-00-4	
1,2-Dichloroethane-d4 (S)	93	%	70-130	1		03/28/16 19:39	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		03/28/16 19:39	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	92.1	ug/L	5.0	2.5		03/22/16 23:22	123-91-1	
1,2-Dichloroethane-d4 (S)	102	%	50-150	1		03/24/16 09:58	17060-07-0	
Toluene-d8 (S)	104	%	50-150	1		03/24/16 09:58	2037-26-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: TRIP BLANKS	Lab ID: 922	90859012	Collected: 03/21/1	16 00:00	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level	Analytical Met	nod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/25/16 01:29	9 67-64-1	
Benzene	ND	ug/L	1.0	1		03/25/16 01:29	9 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 01:29	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 01:29	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 01:29	9 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 01:29	9 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 01:29	74-83-9	
P-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 01:29	9 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 01:29	9 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 01:29	9 108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/25/16 01:29	9 75-00-3	
Chloroform	ND	ug/L	1.0	1		03/25/16 01:29		
Chloromethane	ND	ug/L	1.0	1		03/25/16 01:29		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 01:29		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 01:29		
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		03/25/16 01:29		
Dibromochloromethane	ND	ug/L	1.0	1		03/25/16 01:29		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		03/25/16 01:29	_	
bibromomethane	ND	ug/L	1.0	1		03/25/16 01:29		
.2-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 01:29		
,3-Dichlorobenzene	ND	ug/L	1.0	1		03/25/16 01:29		
,4-Dichlorobenzene	ND ND	_	1.0	1		03/25/16 01:29		
ichlorodifluoromethane	ND ND	ug/L	1.0	1		03/25/16 01:29		
	ND ND	ug/L	1.0	1		03/25/16 01:29		
,1-Dichloroethane		ug/L		1				
,2-Dichloroethane	ND	ug/L	1.0			03/25/16 01:29		
,1-Dichloroethene	ND	ug/L	1.0	1 1		03/25/16 01:29		
is-1,2-Dichloroethene	ND	ug/L	1.0			03/25/16 01:29		
ans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 01:29		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 01:29		
,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 01:29		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 01:29		
,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 01:29		
is-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 01:29		
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 01:29		
Diisopropyl ether	ND	ug/L	1.0	1		03/25/16 01:29		
,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/25/16 01:29		
thylbenzene	ND	ug/L	1.0	1		03/25/16 01:29		
exachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 01:29		
-Hexanone	ND	ug/L	5.0	1		03/25/16 01:29		
-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 01:29		
lethylene Chloride	ND	ug/L	2.0	1		03/25/16 01:29		
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/25/16 01:29	9 108-10-1	
lethyl-tert-butyl ether	ND	ug/L	1.0	1		03/25/16 01:29	9 1634-04-4	
laphthalene	ND	ug/L	1.0	1		03/25/16 01:29	9 91-20-3	
tyrene	ND	ug/L	1.0	1		03/25/16 01:29	9 100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 01:29	9 630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 01:29	9 79-34-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: TRIP BLANKS	Lab ID: 9229	90859012	Collected: 03/21/1	6 00:00	Received: 0	3/22/16 09:40 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 01:29	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 01:29	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 01:29	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 01:29	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/25/16 01:29	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 01:29	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 01:29	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 01:29	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 01:29	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 01:29	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 01:29	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 01:29	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 01:29	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 01:29	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	99	%	70-130	1		03/25/16 01:29	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130	1		03/25/16 01:29	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		03/25/16 01:29	2037-26-5	
8260 MSV SIM	Analytical Meth	od: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		03/24/16 11:56	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	50-150	1		03/24/16 11:56	17060-07-0	
Toluene-d8 (S)	102	%	50-150	1		03/24/16 11:56	2037-26-5	

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: EB-032116	Lab ID: 922	90859013	Collected: 03/21/1	16 16:15	Received:	03/22/16 09:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Low Level	Analytical Met	nod: EPA 82	260					
Acetone	ND	ug/L	25.0	1		03/25/16 02:02	2 67-64-1	
Benzene	ND	ug/L	1.0	1		03/25/16 02:02	2 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/25/16 02:02	2 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/25/16 02:02	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/25/16 02:02	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		03/25/16 02:02	2 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/25/16 02:02	2 74-83-9	
-Butanone (MEK)	ND	ug/L	5.0	1		03/25/16 02:02	2 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/25/16 02:02		
Chlorobenzene	ND	ug/L	1.0	1		03/25/16 02:02		
Chloroethane	ND	ug/L	1.0	1		03/25/16 02:02		
Chloroform	ND	ug/L	1.0	1		03/25/16 02:02		
Chloromethane	ND	ug/L	1.0	1		03/25/16 02:02		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 02:02		
-Chlorotoluene	ND	ug/L	1.0	1		03/25/16 02:02		
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		03/25/16 02:02		
Dibromochloromethane	ND ND	ug/L	1.0	1		03/25/16 02:02		
,2-Dibromoethane (EDB)	ND ND	ug/L	1.0	1		03/25/16 02:02		
bibromomethane	ND ND	ug/L	1.0	1		03/25/16 02:02		
.2-Dichlorobenzene	ND ND	_	1.0	1		03/25/16 02:02		
,		ug/L						
,3-Dichlorobenzene	ND	ug/L	1.0	1 1		03/25/16 02:02		
,4-Dichlorobenzene	ND	ug/L	1.0			03/25/16 02:02		
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/25/16 02:02		
,1-Dichloroethane	ND	ug/L	1.0	1		03/25/16 02:02		
,2-Dichloroethane	ND	ug/L	1.0	1		03/25/16 02:02		
,1-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:02		
is-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:02		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/25/16 02:02		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:02		
,3-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:02		
,2-Dichloropropane	ND	ug/L	1.0	1		03/25/16 02:02		
,1-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:02		
is-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:02		
ans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/25/16 02:02	2 10061-02-6	
iisopropyl ether	ND	ug/L	1.0	1		03/25/16 02:02	2 108-20-3	
,4-Dioxane (p-Dioxane)	ND	ug/L	150	1		03/25/16 02:02	2 123-91-1	
thylbenzene	ND	ug/L	1.0	1		03/25/16 02:02	2 100-41-4	
exachloro-1,3-butadiene	ND	ug/L	1.0	1		03/25/16 02:02	2 87-68-3	
-Hexanone	ND	ug/L	5.0	1		03/25/16 02:02	2 591-78-6	
-Isopropyltoluene	ND	ug/L	1.0	1		03/25/16 02:02	99-87-6	
lethylene Chloride	ND	ug/L	2.0	1		03/25/16 02:02	2 75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/25/16 02:02	2 108-10-1	
lethyl-tert-butyl ether	ND	ug/L	1.0	1		03/25/16 02:02	2 1634-04-4	
laphthalene	ND	ug/L	1.0	1		03/25/16 02:02	2 91-20-3	
tyrene	ND	ug/L	1.0	1		03/25/16 02:02		
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 02:02		
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/25/16 02:02		

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Sample: EB-032116	Lab ID: 922	90859013	Collected: 03/21/1	6 16:15	Received: 0	3/22/16 09:40 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	1.0	1		03/25/16 02:02	127-18-4	
Toluene	ND	ug/L	1.0	1		03/25/16 02:02	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:02	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/25/16 02:02	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/25/16 02:02	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/25/16 02:02	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/25/16 02:02	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/25/16 02:02	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/25/16 02:02	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/25/16 02:02	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/25/16 02:02	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/25/16 02:02	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		03/25/16 02:02	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/25/16 02:02	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	98	%	70-130	1		03/25/16 02:02	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		03/25/16 02:02	17060-07-0	
Toluene-d8 (S)	96	%	70-130	1		03/25/16 02:02	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		03/22/16 23:59	123-91-1	
1,2-Dichloroethane-d4 (S)	92	%	50-150	1		03/22/16 23:59	17060-07-0	
Toluene-d8 (S)	101	%	50-150	1		03/22/16 23:59	2037-26-5	

QUALITY CONTROL DATA

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

QC Batch: MSV/36119 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Low Level

92290859001, 92290859002, 92290859003, 92290859004, 92290859005, 92290859007, 92290859008, Associated Lab Samples:

92290859009, 92290859012, 92290859013

METHOD BLANK: 1694724 Matrix: Water

92290859001, 92290859002, 92290859003, 92290859004, 92290859005, 92290859007, 92290859008, Associated Lab Samples: Rlank

92290859009, 92290859012, 92290859013

32230	000000, 02200000012,	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		1.0	03/25/16 00:56	
1,1,1-Trichloroethane	ug/L	ND	1.0	03/25/16 00:56	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	03/25/16 00:56	
1,1,2-Trichloroethane	ug/L	ND	1.0	03/25/16 00:56	
1,1-Dichloroethane	ug/L	ND	1.0		
1,1-Dichloroethene	ug/L	ND	1.0	03/25/16 00:56	
1,1-Dichloropropene	ug/L	ND	1.0	03/25/16 00:56	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	03/25/16 00:56	
1,2,3-Trichloropropane	ug/L	ND	1.0	03/25/16 00:56	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	03/25/16 00:56	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.0	03/25/16 00:56	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	03/25/16 00:56	
1,2-Dichlorobenzene	ug/L	ND	1.0	03/25/16 00:56	
1,2-Dichloroethane	ug/L	ND	1.0	03/25/16 00:56	
1,2-Dichloropropane	ug/L	ND	1.0	03/25/16 00:56	
1,3-Dichlorobenzene	ug/L	ND	1.0		
1,3-Dichloropropane	ug/L	ND	1.0	03/25/16 00:56	
1,4-Dichlorobenzene	ug/L	ND	1.0	03/25/16 00:56	
1,4-Dioxane (p-Dioxane)	ug/L	ND	150	03/25/16 00:56	
2,2-Dichloropropane	ug/L	ND	1.0		
2-Butanone (MEK)	ug/L	ND	5.0	03/25/16 00:56	
2-Chlorotoluene	ug/L	ND	1.0	03/25/16 00:56	
2-Hexanone	ug/L	ND	5.0	03/25/16 00:56	
4-Chlorotoluene	ug/L	ND	1.0	03/25/16 00:56	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	03/25/16 00:56	
Acetone	ug/L	ND	25.0	03/25/16 00:56	
Benzene	ug/L	ND	1.0	03/25/16 00:56	
Bromobenzene	ug/L	ND	1.0	03/25/16 00:56	
Bromochloromethane	ug/L	ND	1.0	03/25/16 00:56	
Bromodichloromethane	ug/L	ND	1.0	03/25/16 00:56	
Bromoform	ug/L	ND	1.0	03/25/16 00:56	
Bromomethane	ug/L	ND	2.0	03/25/16 00:56	
Carbon tetrachloride	ug/L	ND	1.0	03/25/16 00:56	
Chlorobenzene	ug/L	ND	1.0	03/25/16 00:56	
Chloroethane	ug/L	ND	1.0	03/25/16 00:56	
Chloroform	ug/L	ND	1.0	03/25/16 00:56	
Chloromethane	ug/L	ND	1.0	03/25/16 00:56	
cis-1,2-Dichloroethene	ug/L	ND	1.0	03/25/16 00:56	
cis-1,3-Dichloropropene	ug/L	ND	1.0	03/25/16 00:56	
Dibromochloromethane	ug/L	ND	1.0	03/25/16 00:56	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

METHOD BLANK: 1694724 Matrix: Water

92290859001, 92290859002, 92290859003, 92290859004, 92290859005, 92290859007, 92290859008, Associated Lab Samples:

92290859009, 92290859012, 92290859013

ъ.	11.2	Blank	Reporting		0 ""
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	03/25/16 00:56	
Dichlorodifluoromethane	ug/L	ND	1.0	03/25/16 00:56	
Diisopropyl ether	ug/L	ND	1.0	03/25/16 00:56	
Ethylbenzene	ug/L	ND	1.0	03/25/16 00:56	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	03/25/16 00:56	
m&p-Xylene	ug/L	ND	2.0	03/25/16 00:56	
Methyl-tert-butyl ether	ug/L	ND	1.0	03/25/16 00:56	
Methylene Chloride	ug/L	ND	2.0	03/25/16 00:56	
Naphthalene	ug/L	ND	1.0	03/25/16 00:56	
o-Xylene	ug/L	ND	1.0	03/25/16 00:56	
p-Isopropyltoluene	ug/L	ND	1.0	03/25/16 00:56	
Styrene	ug/L	ND	1.0	03/25/16 00:56	
Tetrachloroethene	ug/L	ND	1.0	03/25/16 00:56	
Toluene	ug/L	ND	1.0	03/25/16 00:56	
trans-1,2-Dichloroethene	ug/L	ND	1.0	03/25/16 00:56	
trans-1,3-Dichloropropene	ug/L	ND	1.0	03/25/16 00:56	
Trichloroethene	ug/L	ND	1.0	03/25/16 00:56	
Trichlorofluoromethane	ug/L	ND	1.0	03/25/16 00:56	
Vinyl acetate	ug/L	ND	2.0	03/25/16 00:56	
Vinyl chloride	ug/L	ND	1.0	03/25/16 00:56	
Xylene (Total)	ug/L	ND	2.0	03/25/16 00:56	
1,2-Dichloroethane-d4 (S)	%	100	70-130	03/25/16 00:56	
4-Bromofluorobenzene (S)	%	106	70-130	03/25/16 00:56	
Toluene-d8 (S)	%	106	70-130	03/25/16 00:56	

LABORATORY CONTROL SAMPLE:	1694725					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	52.4	105	70-130	
1,1,1-Trichloroethane	ug/L	50	52.0	104	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	46.6	93	70-130	
1,1,2-Trichloroethane	ug/L	50	51.5	103	70-130	
1,1-Dichloroethane	ug/L	50	52.3	105	70-130	
1,1-Dichloroethene	ug/L	50	46.4	93	70-132	
1,1-Dichloropropene	ug/L	50	54.1	108	70-130	
1,2,3-Trichlorobenzene	ug/L	50	49.4	99	70-135	
1,2,3-Trichloropropane	ug/L	50	45.4	91	70-130	
1,2,4-Trichlorobenzene	ug/L	50	49.3	99	70-134	
1,2-Dibromo-3-chloropropane	ug/L	50	47.6	95	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	61.0	122	70-130	
1,2-Dichlorobenzene	ug/L	50	49.9	100	70-130	
1,2-Dichloroethane	ug/L	50	49.8	100	70-130	
1,2-Dichloropropane	ug/L	50	48.6	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

LABORATORY CONTROL SAMPLE:	1694725	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,3-Dichlorobenzene	ug/L		53.3	107	70-130	
1,3-Dichloropropane	ug/L	50	58.1	116	70-130	
1,4-Dichlorobenzene	ug/L	50	51.4	103	70-130	
1,4-Dioxane (p-Dioxane)	ug/L	1000	1150	115	71-125	
2,2-Dichloropropane	ug/L	50	50.6	101	58-145	
2-Butanone (MEK)	ug/L	100	89.6	90	70-145	
2-Chlorotoluene	ug/L	50	45.8	92	70-130	
2-Hexanone	ug/L	100	98.2	98	70-144	
4-Chlorotoluene	ug/L	50	52.3	105	70-130	
4-Methyl-2-pentanone (MIBK)	ug/L	100	98.0	98	70-140	
Acetone	ug/L	100	91.8	92	50-175	
Benzene	ug/L	50	44.7	89	70-130	
Bromobenzene	ug/L	50	52.0	104	70-130	
Bromochloromethane	ug/L	50	53.1	106	70-130	
Bromodichloromethane	ug/L	50	51.3	103	70-130	
Bromoform	ug/L	50	43.9	88	70-130	
Bromomethane	ug/L	50	44.6	89	54-130	
Carbon tetrachloride	ug/L	50	47.6	95	70-132	
Chlorobenzene	ug/L	50	51.2	102	70-130	
Chloroethane	ug/L	50	50.5	101	64-134	
Chloroform	ug/L	50	50.0	100	70-130	
Chloromethane	ug/L	50	48.5	97	64-130	
cis-1,2-Dichloroethene	ug/L	50	51.0	102	70-131	
cis-1,3-Dichloropropene	ug/L	50	49.8	100	70-130	
Dibromochloromethane	ug/L	50	59.6	119	70-130	
Dibromomethane	ug/L	50	49.0	98	70-131	
Dichlorodifluoromethane	ug/L	50	43.2	86	56-130	
Diisopropyl ether	ug/L	50	52.2	104	70-130	
Ethylbenzene	ug/L	50	50.2	100	70-130	
Hexachloro-1,3-butadiene	ug/L	50	47.4	95	70-130	
m&p-Xylene	ug/L	100	99.3	99	70-130	
Methyl-tert-butyl ether	ug/L	50	51.9	104	70-130	
Methylene Chloride	ug/L	50	49.9	100	63-130	
Naphthalene	ug/L	50	46.2	92	70-138	
o-Xylene	ug/L	50	44.5	89	70-130	
p-Isopropyltoluene	ug/L	50	51.1	102	70-130	
Styrene	ug/L	50	46.9	94	70-130	
Tetrachloroethene	ug/L	50	56.3	113	70-130	
Toluene	ug/L	50	48.2	96	70-130	
trans-1,2-Dichloroethene	ug/L	50	52.3	105	70-130	
trans-1,3-Dichloropropene	ug/L	50	50.4	101	70-132	
Trichloroethene	ug/L	50	47.8	96	70-130	
Trichlorofluoromethane	ug/L	50	44.2	88	62-133	
Vinyl acetate	ug/L	100	113	113	66-157	
Vinyl chloride	ug/L	50	46.5	93	50-150	
Xylene (Total)	ug/L	150	144	96	70-130	
1,2-Dichloroethane-d4 (S)	%			97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Tol

LABORATORY CONTROL SAMPLE: 1694725

LABORATORT CONTROL SAMPLE.	1094723	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4-Bromofluorobenzene (S)	%			110	70-130	
Toluene-d8 (S)	%			93	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLICATE	: 16947	26		1694727							
			MS	MSD								
	9229	90859004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	22.8	17.2	114	86	70-130	28	30	
1,1,1-Trichloroethane	ug/L	25.7	20	20	51.8	43.8	130	90	70-130	17	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	21.7	18.4	109	92	70-130	17	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	20.1	16.6	98	81	70-130	19	30	
1,1-Dichloroethane	ug/L	39.6	20	20	62.9	53.9	116	71	70-130	15	30	
1,1-Dichloroethene	ug/L	138	20	20	202	157	318	94	70-166	25	30	E,M1
1,1-Dichloropropene	ug/L	ND	20	20	25.5	20.0	127	100	70-130	24	30	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	19.5	15.6	98	78	70-130	22	30	
1,2,3-Trichloropropane	ug/L	ND	20	20	21.6	18.5	108	92	70-130	16	30	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	20.9	15.7	104	78	70-130	29	30	
1,2-Dibromo-3-	ug/L	ND	20	20	19.3	17.2	97	86	70-130	12	30	
chloropropane												
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	21.8	16.7	109	83	70-130	26	30	
1,2-Dichlorobenzene	ug/L	ND	20	20	21.6	17.5	108	87	70-130	21	30	
1,2-Dichloroethane	ug/L	1.9	20	20	23.5	19.1	108	86	70-130	21	30	
1,2-Dichloropropane	ug/L	ND	20	20	23.0	15.5	115	78	70-130	39	30	R1
1,3-Dichlorobenzene	ug/L	ND	20	20	23.1	18.0	116	90	70-130	25	30	
1,3-Dichloropropane	ug/L	ND	20	20	21.8	16.2	109	81	70-130	29	30	
1,4-Dichlorobenzene	ug/L	ND	20	20	22.5	17.1	113	85	70-130	27	30	
1,4-Dioxane (p-Dioxane)	ug/L	ND	400	400	271	572	68	143	70-130	72		M1,R1
2,2-Dichloropropane	ug/L	ND	20	20	21.6	16.3	108	81	70-130	28	30	
2-Butanone (MEK)	ug/L	ND	40	40	38.2	34.0	95	85	70-130	12	30	
2-Chlorotoluene	ug/L	ND	20	20	22.5	16.7	113	83	70-130	30	30	
2-Hexanone	ug/L	ND	40	40	38.8	34.6	97	87	70-130	11	30	
4-Chlorotoluene	ug/L	ND	20	20	23.1	17.4	115	87	70-130	28	30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	40	40	35.9	33.0	90	82	70-130	9	30	
Acetone	ug/L	ND	40	40	42.1	32.0	105	80	70-130	27	30	
Benzene	ug/L	4.4	20	20	25.2	21.1	104	84	70-148	18	30	
Bromobenzene	ug/L	ND	20	20	23.2	18.9	116	94	70-130	21	30	
Bromochloromethane	ug/L	ND	20	20	23.6	18.3	118	91	70-130	25	30	
Bromodichloromethane	ug/L	ND	20	20	22.7	15.9	113	80	70-130	35	30	R1
Bromoform	ug/L	ND	20	20	19.3	15.9	97	79	70-130	20	30	111
Bromomethane	ug/L	ND	20	20	20.5	13.6	102	68	70-130	41		M1,R1
Carbon tetrachloride	ug/L	ND	20	20	25.1	18.5	126	92	70-130	31	30	
Chlorobenzene	ug/L	ND	20	20	23.1	17.4	116	87	70-146	28	30	
Chloroethane	ug/L	ND	20	20	25.7	15.3	129	77	70-130	51	30	R1
Chloroform	ug/L	ND	20	20	25.7	20.0	125	100	70-130	22	30	
Chloromethane	ug/L	ND ND	20	20	21.3	13.7	107	69	70-130	43		M1,R1
Onlordificulatio	ug/L	IND	20	20	21.3	13.7	107	09	10-130	43	50	IVI I , I X I

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 16947	26		1694727							
Parameter	9. Units	2290859004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
cis-1,2-Dichloroethene	ug/L	ND	20	20	25.0	20.3	125	101	70-130	21	30	
cis-1,3-Dichloropropene	ug/L	ND	20	20	20.1	16.8	100	84	70-130	18	30	
Dibromochloromethane	ug/L	ND	20	20	22.3	17.3	111	86	70-130	25	30	
Dibromomethane	ug/L	ND	20	20	22.9	16.0	114	80	70-130	36	30	R1
Dichlorodifluoromethane	ug/L	ND	20	20	19.4	13.0	97	65	70-130	40	30	M1,R1
Diisopropyl ether	ug/L	ND	20	20	25.7	16.7	128	84	70-130	42	30	R1
Ethylbenzene	ug/L	ND	20	20	22.6	17.7	113	88	70-130	24	30	
Hexachloro-1,3-butadiene	ug/L	ND	20	20	20.2	17.0	101	85	70-130	17	30	
m&p-Xylene	ug/L	ND	40	40	44.5	33.8	111	84	70-130	27	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	24.5	16.5	120	81	70-130	39	30	R1
Methylene Chloride	ug/L	ND	20	20	24.3	16.6	118	79	70-130	38	30	R1
Naphthalene	ug/L	ND	20	20	19.8	14.1	99	70	70-130	34	30	R1
o-Xylene	ug/L	ND	20	20	21.5	17.3	108	87	70-130	21	30	
p-Isopropyltoluene	ug/L	ND	20	20	22.5	17.9	113	89	70-130	23	30	
Styrene	ug/L	ND	20	20	20.9	17.0	105	85	70-130	21	30	
Tetrachloroethene	ug/L	ND	20	20	22.4	17.4	110	85	70-130	25	30	
Toluene	ug/L	ND	20	20	21.0	15.9	105	79	70-155	28	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	26.8	18.8	134	94	70-130	35	30	M1,R1
trans-1,3-Dichloropropene	ug/L	ND	20	20	18.8	15.6	94	78	70-130	19	30	
Trichloroethene	ug/L	ND	20	20	23.9	17.7	116	85	69-151	30	30	
Trichlorofluoromethane	ug/L	ND	20	20	22.5	16.0	112	80	70-130	34	30	R1
Vinyl acetate	ug/L	ND	40	40	42.1	32.3	105	81	70-130	26	30	
Vinyl chloride	ug/L	ND	20	20	21.9	15.8	110	79	70-130	33	30	R1
1,2-Dichloroethane-d4 (S)	%						100	101	70-130			
4-Bromofluorobenzene (S)	%						105	97	70-130			
Toluene-d8 (S)	%						87	88	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

QC Batch: MSV/36171 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Low Level

Associated Lab Samples: 92290859006, 92290859010, 92290859011

METHOD BLANK: 1696480 Matrix: Water

Associated Lab Samples: 92290859006, 92290859010, 92290859011

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	03/28/16 14:41	
1,1,1-Trichloroethane	ug/L	ND	1.0	03/28/16 14:41	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	03/28/16 14:41	
1,1,2-Trichloroethane	ug/L	ND	1.0	03/28/16 14:41	
1,1-Dichloroethane	ug/L	ND	1.0	03/28/16 14:41	
1,1-Dichloroethene	ug/L	ND	1.0	03/28/16 14:41	
1,1-Dichloropropene	ug/L	ND	1.0	03/28/16 14:41	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	03/28/16 14:41	
1,2,3-Trichloropropane	ug/L	ND	1.0	03/28/16 14:41	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	03/28/16 14:41	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.0	03/28/16 14:41	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	03/28/16 14:41	
1,2-Dichlorobenzene	ug/L	ND	1.0	03/28/16 14:41	
1,2-Dichloroethane	ug/L	ND	1.0	03/28/16 14:41	
1,2-Dichloropropane	ug/L	ND	1.0	03/28/16 14:41	
1,3-Dichlorobenzene	ug/L	ND	1.0	03/28/16 14:41	
1,3-Dichloropropane	ug/L	ND	1.0	03/28/16 14:41	
1,4-Dichlorobenzene	ug/L	ND	1.0	03/28/16 14:41	
1,4-Dioxane (p-Dioxane)	ug/L	ND	150	03/28/16 14:41	
2,2-Dichloropropane	ug/L	ND	1.0	03/28/16 14:41	
2-Butanone (MEK)	ug/L	ND	5.0	03/28/16 14:41	
2-Chlorotoluene	ug/L	ND	1.0	03/28/16 14:41	
2-Hexanone	ug/L	ND	5.0	03/28/16 14:41	
4-Chlorotoluene	ug/L	ND	1.0	03/28/16 14:41	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	03/28/16 14:41	
Acetone	ug/L	ND	25.0	03/28/16 14:41	
Benzene	ug/L	ND	1.0	03/28/16 14:41	
Bromobenzene	ug/L	ND	1.0	03/28/16 14:41	
Bromochloromethane	ug/L	ND	1.0	03/28/16 14:41	
Bromodichloromethane	ug/L	ND	1.0	03/28/16 14:41	
Bromoform	ug/L	ND	1.0	03/28/16 14:41	
Bromomethane	ug/L	ND	2.0	03/28/16 14:41	
Carbon tetrachloride	ug/L	ND	1.0	03/28/16 14:41	
Chlorobenzene	ug/L	ND	1.0	03/28/16 14:41	
Chloroethane	ug/L	ND	1.0	03/28/16 14:41	
Chloroform	ug/L	ND	1.0	03/28/16 14:41	
Chloromethane	ug/L	ND	1.0	03/28/16 14:41	
cis-1,2-Dichloroethene	ug/L	ND	1.0	03/28/16 14:41	
cis-1,3-Dichloropropene	ug/L	ND	1.0	03/28/16 14:41	
Dibromochloromethane	ug/L	ND	1.0	03/28/16 14:41	
Dibromomethane	ug/L	ND	1.0	03/28/16 14:41	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

METHOD BLANK: 1696480 Matrix: Water

Associated Lab Samples: 92290859006, 92290859010, 92290859011

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	03/28/16 14:41	
Diisopropyl ether	ug/L	ND	1.0	03/28/16 14:41	
Ethylbenzene	ug/L	ND	1.0	03/28/16 14:41	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	03/28/16 14:41	
m&p-Xylene	ug/L	ND	2.0	03/28/16 14:41	
Methyl-tert-butyl ether	ug/L	ND	1.0	03/28/16 14:41	
Methylene Chloride	ug/L	ND	2.0	03/28/16 14:41	
Naphthalene	ug/L	ND	1.0	03/28/16 14:41	
o-Xylene	ug/L	ND	1.0	03/28/16 14:41	
p-Isopropyltoluene	ug/L	ND	1.0	03/28/16 14:41	
Styrene	ug/L	ND	1.0	03/28/16 14:41	
Tetrachloroethene	ug/L	ND	1.0	03/28/16 14:41	
Toluene	ug/L	ND	1.0	03/28/16 14:41	
trans-1,2-Dichloroethene	ug/L	ND	1.0	03/28/16 14:41	
trans-1,3-Dichloropropene	ug/L	ND	1.0	03/28/16 14:41	
Trichloroethene	ug/L	ND	1.0	03/28/16 14:41	
Trichlorofluoromethane	ug/L	ND	1.0	03/28/16 14:41	
Vinyl acetate	ug/L	ND	2.0	03/28/16 14:41	
Vinyl chloride	ug/L	ND	1.0	03/28/16 14:41	
Xylene (Total)	ug/L	ND	2.0	03/28/16 14:41	
1,2-Dichloroethane-d4 (S)	%	98	70-130	03/28/16 14:41	
4-Bromofluorobenzene (S)	%	96	70-130	03/28/16 14:41	
Toluene-d8 (S)	%	100	70-130	03/28/16 14:41	

LABORATORY CONTROL SAMPLE:	1696481					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	49.2	98	70-130	
1,1,1-Trichloroethane	ug/L	50	47.3	95	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	47.5	95	70-130	
1,1,2-Trichloroethane	ug/L	50	47.9	96	70-130	
1,1-Dichloroethane	ug/L	50	47.8	96	70-130	
1,1-Dichloroethene	ug/L	50	48.7	97	70-132	
1,1-Dichloropropene	ug/L	50	49.3	99	70-130	
1,2,3-Trichlorobenzene	ug/L	50	52.3	105	70-135	
1,2,3-Trichloropropane	ug/L	50	49.2	98	70-130	
1,2,4-Trichlorobenzene	ug/L	50	52.0	104	70-134	
1,2-Dibromo-3-chloropropane	ug/L	50	49.3	99	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	50.1	100	70-130	
1,2-Dichlorobenzene	ug/L	50	46.9	94	70-130	
1,2-Dichloroethane	ug/L	50	44.5	89	70-130	
1,2-Dichloropropane	ug/L	50	48.7	97	70-130	
1,3-Dichlorobenzene	ug/L	50	49.2	98	70-130	
1,3-Dichloropropane	ug/L	50	46.8	94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

ABORATORY CONTROL SAMPLE:	1696481	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
,4-Dichlorobenzene	ug/L		49.1	98	70-130	
,4-Dioxane (p-Dioxane)	ug/L	1000	466	47	71-125	∟ 0
2,2-Dichloropropane	ug/L	50	50.2	100	58-145	
2-Butanone (MEK)	ug/L	100	94.8	95	70-145	
2-Chlorotoluene	ug/L	50	48.2	96	70-130	
2-Hexanone	ug/L	100	93.5	93	70-144	
I-Chlorotoluene	ug/L	50	47.5	95	70-130	
I-Methyl-2-pentanone (MIBK)	ug/L	100	103	103	70-140	
Acetone	ug/L	100	92.9	93	50-175	
Benzene	ug/L	50	49.3	99	70-130	
Bromobenzene	ug/L	50	47.5	95	70-130	
Bromochloromethane	ug/L	50	47.8	96	70-130	
Bromodichloromethane	ug/L	50	48.4	97	70-130	
Bromoform	ug/L	50 50	39.0	78	70-130	
Bromomethane	ug/L	50 50	54.5	109	54-130	
Carbon tetrachloride	ug/L	50 50	48.5	97	70-132	
Chlorobenzene	ug/L	50	46.9	94	70-130	
Chloroethane	ug/L	50	46.5	93	64-134	
Chloroform	ug/L	50 50	48.9	98	70-130	
Chloromethane	ug/L	50	46.0	92	64-130	
sis-1,2-Dichloroethene	ug/L	50	48.6	97	70-131	
sis-1,3-Dichloropropene	ug/L	50	51.3	103	70-130	
Dibromochloromethane	ug/L	50	47.4	95	70-130	
Dibromomethane	ug/L	50 50	49.3	99	70-130	
Dichlorodifluoromethane	ug/L	50 50	50.0	100	56-130	
Diisopropyl ether	ug/L	50 50	50.3	101	70-130	
Ethylbenzene	ug/L	50	47.3	95	70-130	
Hexachloro-1,3-butadiene	ug/L	50 50	51.1	102	70-130	
n&p-Xylene	ug/L	100	93.1	93	70-130	
Methyl-tert-butyl ether	ug/L	50	49.3	99	70-130	
Methylene Chloride	ug/L	50 50	49.3 48.7	99 97	63-130	
Naphthalene	ug/L	50 50	51.3	103	70-138	
o-Xylene	ug/L	50	46.1	92	70-130	
o-Aylerie o-Isopropyltoluene	ug/∟ ug/L	50 50	50.0	100	70-130	
Styrene	ug/L ug/L	50 50	47.4	95	70-130	
etrachloroethene	ug/L	50 50	47.4 47.7	95 95	70-130	
oluene	ug/L	50 50	47.7 47.0	94	70-130	
rans-1,2-Dichloroethene	ug/L ug/L	50	49.9	100	70-130	
rans-1,3-Dichloropropene	ug/L ug/L	50 50	49.9 49.6	99	70-130	
richloroethene	ug/L ug/L	50 50	49.6	93	70-132	
richlorofluoromethane	ug/L	50	51.2	102	62-133	
/inyl acetate	ug/∟ ug/L	100	90.4	90	66-157	
/inyl acetate /inyl chloride	_	50	90.4 53.2		50-157	
-	ug/L			106		
(ylene (Total)	ug/L	150	139	93	70-130 70-130	
,2-Dichloroethane-d4 (S)	%			96	70-130	
l-Bromofluorobenzene (S)	%			99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	ATE: 16964	82		1696483							
			MS	MSD								
	9	2291503007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
,1,1,2-Tetrachloroethane	ug/L	ND	20	20	21.9	20.1	109	101	70-130	8	30	
,1,1-Trichloroethane	ug/L	ND	20	20	22.9	20.5	114	103	70-130	11	30	
,1,2,2-Tetrachloroethane	ug/L	ND	20	20	20.6	20.8	103	104	70-130	1	30	
,1,2-Trichloroethane	ug/L	ND	20	20	21.9	20.8	109	104	70-130	5	30	
,1-Dichloroethane	ug/L	ND	20	20	22.5	21.0	113	105	70-130	7	30	
,1-Dichloroethene	ug/L	ND	20	20	23.9	22.5	119	112	70-166	6	30	
,1-Dichloropropene	ug/L	ND	20	20	23.8	22.2	119	111	70-130	7	30	
,2,3-Trichlorobenzene	ug/L	ND	20	20	22.6	21.6	113	108	70-130	4	30	
,2,3-Trichloropropane	ug/L	ND	20	20	20.3	19.9	102	100	70-130	2	30	
,2,4-Trichlorobenzene	ug/L	ND	20	20	22.2	21.8	111	109	70-130	2	30	
,2-Dibromo-3-	ug/L	ND	20	20	19.3	19.7	97	98	70-130	2	30	
hloropropane	Ü											
,2-Dibromoethane (EDB)	ug/L	ND	20	20	22.5	21.2	113	106	70-130	6	30	
,2-Dichlorobenzene	ug/L	ND	20	20	21.5	19.9	107	100	70-130	7	30	
,2-Dichloroethane	ug/L	ND	20	20	20.4	19.6	101	97	70-130	4	30	
,2-Dichloropropane	ug/L	ND	20	20	23.0	21.1	115	106	70-130	9	30	
,3-Dichlorobenzene	ug/L	ND	20	20	22.8	21.5	114	108	70-130	6	30	
,3-Dichloropropane	ug/L	ND	20	20	21.4	19.9	107	100	70-130	7	30	
,4-Dichlorobenzene	ug/L	ND	20	20	21.8	21.4	109	107	70-130	2	30	
,4-Dioxane (p-Dioxane)	ug/L	ND	400	400	ND	123J	10	31	70-130		30	MO
2,2-Dichloropropane	ug/L	ND	20	20	21.5	20.0	108	100	70-130	7	30	
2-Butanone (MEK)	ug/L	ND	40	40	36.1	41.2	90	103	70-130	13	30	
-Chlorotoluene	ug/L	ND	20	20	22.8	21.0	114	105	70-130	8	30	
2-Hexanone	ug/L	ND	40	40	36.9	41.3	92	103	70-130	11	30	
-Chlorotoluene	ug/L	ND	20	20	21.7	20.4	109	102	70-130	6	30	
-Methyl-2-pentanone MIBK)	ug/L	ND	40	40	41.7	45.4	104	113	70-130	9	30	
Acetone	ug/L	ND	40	40	50.4	57.7	80	99	70-130	14	30	
Benzene	ug/L	ND	20	20	23.5	21.7	117	109	70-148		30	
Bromobenzene	ug/L	ND	20	20	22.3	20.5	111	103	70-130	8	30	
Bromochloromethane	ug/L	ND	20	20	21.8	20.8	109	104	70-130	5	30	
Bromodichloromethane	ug/L	ND	20	20	21.5	20.7	108	103	70-130	4	30	
Bromoform	ug/L	ND	20	20	17.9	17.4	89	87	70-130	3	30	
Bromomethane	ug/L	ND	20	20	23.7	25.6	119	128	70-130	8	30	
Carbon tetrachloride	ug/L	ND	20	20	23.3	21.8	116	109	70-130		30	
Chlorobenzene	ug/L	ND	20	20	22.3	20.2	112	101	70-146	10	30	
Chloroethane	ug/L	ND	20	20	22.1	21.2	110	106	70-130	4	30	
Chloroform	ug/L	ND	20	20	22.8	22.0	114	110	70-130	3	30	
Chloromethane	ug/L	ND	20	20	21.6	19.4	108	97	70-130	10	30	
is-1,2-Dichloroethene	ug/L	ND	20	20	24.1	21.9	116	105	70-130	10	30	
is-1,3-Dichloropropene	ug/L	ND	20	20	21.9	20.0	109	100	70-130	9	30	
Dibromochloromethane	ug/L	ND	20	20	20.6	18.4	103	92	70-130	12	30	
Dibromomethane	ug/L	ND	20	20	22.0	20.7	110	103	70-130	6	30	
Dichlorodifluoromethane	ug/L	ND	20	20	21.0	19.7	105	99	70-130		30	
iisopropyl ether	ug/L	ND	20	20	22.8	21.3	114	106	70-130		30	
Ethylbenzene	ug/L	ND	20	20	22.5	20.5	113	103	70-130		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 16964	32 MS	MSD	1696483							
	9:	2291503007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Hexachloro-1,3-butadiene	ug/L	ND	20	20	21.1	21.3	106	106	70-130	1	30	
m&p-Xylene	ug/L	ND	40	40	43.6	40.3	109	101	70-130	8	30	
Methyl-tert-butyl ether	ug/L	1.5	20	20	23.2	22.7	109	106	70-130	2	30	
Methylene Chloride	ug/L	ND	20	20	22.4	20.6	112	103	70-130	9	30	
Naphthalene	ug/L	ND	20	20	20.6	20.8	103	104	70-130	1	30	
o-Xylene	ug/L	ND	20	20	21.4	19.8	107	99	70-130	7	30	
p-Isopropyltoluene	ug/L	ND	20	20	22.8	21.1	114	105	70-130	8	30	
Styrene	ug/L	ND	20	20	21.6	19.8	108	99	70-130	9	30	
Tetrachloroethene	ug/L	41.4	20	20	68.5	64.9	136	117	70-130	5	30	M1
Toluene	ug/L	ND	20	20	22.5	20.8	112	104	70-155	8	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	23.5	22.5	117	112	70-130	5	30	
trans-1,3-Dichloropropene	ug/L	ND	20	20	20.9	19.4	105	97	70-130	7	30	
Trichloroethene	ug/L	ND	20	20	22.9	21.7	112	106	69-151	5	30	
Trichlorofluoromethane	ug/L	ND	20	20	24.5	23.1	122	115	70-130	6	30	
Vinyl acetate	ug/L	ND	40	40	35.9	34.8	90	87	70-130	3	30	
Vinyl chloride	ug/L	ND	20	20	24.8	23.7	124	119	70-130	4	30	
1,2-Dichloroethane-d4 (S)	%						93	98	70-130			
4-Bromofluorobenzene (S)	%						96	97	70-130			
Toluene-d8 (S)	%						98	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

QC Batch: MSV/36091 Analysis Method: EPA 8260B Mod.

QC Batch Method: EPA 8260B Mod. Analysis Description: 8260 MSV SIM

Associated Lab Samples: 92290859001, 92290859002, 92290859003, 92290859004, 92290859005, 92290859006, 92290859007,

92290859008, 92290859009, 92290859010, 92290859013

METHOD BLANK: 1692348 Matrix: Water

Associated Lab Samples: 92290859001, 92290859002, 92290859003, 92290859004, 92290859005, 92290859006, 92290859007,

92290859008, 92290859009, 92290859010, 92290859013

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND	2.0	03/22/16 17:50	
1,2-Dichloroethane-d4 (S)	%	101	50-150	03/22/16 17:50	
Toluene-d8 (S)	%	103	50-150	03/22/16 17:50	

LABORATORY CONTROL SAMPLE:	1692349					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	20	18.4	92	71-125	
1,2-Dichloroethane-d4 (S)	%			101	50-150	
Toluene-d8 (S)	%			102	50-150	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 16923	50		1692351							
			MS	MSD								
	9	92290859004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	131	50	50	173	175	85	88	50-150	1	30	
1,2-Dichloroethane-d4 (S)	%						101	101	50-150		150	
Toluene-d8 (S)	%						103	102	50-150		150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

QC Batch: MSV/36104 Analysis Method: EPA 8260B Mod.
QC Batch Method: EPA 8260B Mod. Analysis Description: 8260 MSV SIM

Associated Lab Samples: 92290859011, 92290859012

METHOD BLANK: 1693815 Matrix: Water

Associated Lab Samples: 92290859011, 92290859012

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND	2.0	03/24/16 09:21	
1,2-Dichloroethane-d4 (S)	%	102	50-150	03/24/16 09:21	
Toluene-d8 (S)	%	103	50-150	03/24/16 09:21	

LABORATORY CONTROL SAMPLE: 1693816 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (p-Dioxane) ug/L 20 18.2 91 71-125 1,2-Dichloroethane-d4 (S) % 100 50-150 Toluene-d8 (S) % 100 50-150

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether, Styrene, and Vinyl chloride.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 03/29/2016 04:29 PM

E Analyte concentration exceeded the calibration range. The reported result is estim
--

L0 Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: KOP-FLEX 3705-29

Pace Project No.: 92290859

Date: 03/29/2016 04:29 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92290859001	MW-100-HS	EPA 8260	MSV/36119		
92290859002	MW-18-56-HS	EPA 8260	MSV/36119		
92290859003	MW-03-25.5-HS	EPA 8260	MSV/36119		
92290859004	MW-23D-92-HS	EPA 8260	MSV/36119		
92290859005	MW-21D-102-HS	EPA 8260	MSV/36119		
92290859006	MW-1D-112-HS	EPA 8260	MSV/36171		
92290859007	MW-01-33-HS	EPA 8260	MSV/36119		
92290859008	MW-04-38-HS	EPA 8260	MSV/36119		
92290859009	MW-09-25-HS	EPA 8260	MSV/36119		
92290859010	MW-16-50-HS	EPA 8260	MSV/36171		
92290859011	MW-16D-100-HS	EPA 8260	MSV/36171		
92290859012	TRIP BLANKS	EPA 8260	MSV/36119		
92290859013	EB-032116	EPA 8260	MSV/36119		
92290859001	MW-100-HS	EPA 8260B Mod.	MSV/36091		
92290859002	MW-18-56-HS	EPA 8260B Mod.	MSV/36091		
92290859003	MW-03-25.5-HS	EPA 8260B Mod.	MSV/36091		
92290859004	MW-23D-92-HS	EPA 8260B Mod.	MSV/36091		
92290859005	MW-21D-102-HS	EPA 8260B Mod.	MSV/36091		
92290859006	MW-1D-112-HS	EPA 8260B Mod.	MSV/36091		
92290859007	MW-01-33-HS	EPA 8260B Mod.	MSV/36091		
92290859008	MW-04-38-HS	EPA 8260B Mod.	MSV/36091		
92290859009	MW-09-25-HS	EPA 8260B Mod.	MSV/36091		
92290859010	MW-16-50-HS	EPA 8260B Mod.	MSV/36091		
92290859011	MW-16D-100-HS	EPA 8260B Mod.	MSV/36104		
92290859012	TRIP BLANKS	EPA 8260B Mod.	MSV/36104		
92290859013	EB-032116	EPA 8260B Mod.	MSV/36091		

Pace Analytical®

Out of hold, incorrect preservative, out of temp, incorrect containers)

טסכעment Name: Sample Condition Upon Receipt(SCUR)

F-CHR-CS-003-rev.18

Document No.:

Document Revisea: 18FEB2016 Page 1 of 2

Issuing Authority:
Pace Huntersville Quality Office

Page 2 of 2 for Internal Use ONLY WSP **Sample Condition Upon Client Name:** WO#:92290859 Receipt Courier: TUPS USPS Client Fed Ex Pace Commercial Other: Yes □No Date/Initials Person Examining Contents: Pf 3/22/1/ **Custody Seal Present?** Yes No Seals Intact? Other: Bubble Wrap None **Packing Material:** X Bubble Bags Samples on ice, cooling process has begun Blue None Thermometer: **区 T1505** Type of Ice: **Biological Tissue Frozen?** Yes No □N/A Cooler Temp Corrected (°C): Correction Factor: 0.0°C Temp should be above freezing to 6°C **USDA Regulated Soil** (N/A, water sample) Did samples originate from a foreign source (internationally, Did samples originate in a quarantine zone within the United States: CA, NY, or SC (check maps)? including Hawaii and Puerto Rico)? Yes ☐Yes 🗓 No **COMMENTS:** Chain of Custody Present? X Yes □No □N/A 1. 2. XYes No □N/A Chain of Custody Filled Out? □No 3. Chain of Custody Relinquished? Yes □N/A 4. Yes □No □N/A Sampler Name and/or Signature on COC? Samples Arrived within Hold Time? **▼**Yes □No □N/A Short Hold Time Analysis (<72 hr.)? ☐Yes No □N/A 7. **Rush Turn Around Time Requested?** ☐ Yes No □N/A 8. Yes □No □N/A Sufficient Volume? Correct Containers Used? Yes □No □N/A 9. Yes □N/A -Pace Containers Used? No 10. Yes No □N/A Containers Intact? 11. Note if sediment is visible in the dissolved container No □N/A Filtered Volume Received for Dissolved Tests? Yes □No □N/A Sample Labels Match COC? XYes -Includes Date/Time/ID/Analysis Matrix:_ All containers needing acid/base preservation have been 13. MNo □N/A checked? Yes All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) ☐Yes No □N/A Exceptions: VOA, Coliform, TOC, Oil and Grease, Yes No □N/A DRO/8015 (water) DOC, LLHg ☐Yes **⋈**No □N/A 14. Samples checked for dechlorination No □N/A 15. Headspace in VOA Vials (>5-6mm)? Yes Trip Blank Present? Yes □No □N/A 16. XYes Trip Blank Custody Seals Present? □No □N/A Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Date/Time: Person Contacted: Comments/Resolution: Project Manager SCURF Review: Project Manager SRF Review: Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e.

Page 45 of 47

CHAIN-OF-CUSTODY / Analytical Request Document

	ORIGINAL				ADDITIONAL COMMENTS RELINQU	12 MW-167-100-45 W 5	11 MW 16-50-HS WA	10 MW-09-28-HS WG	04-38-45 WG	8 MU-01-33-HS WG	7 MW-17-112-HS W 6	6 MW-21D-102-HS W G	~57 (of MW-23D-92-HS) W (5	4 Mb-23D-92-HS 11/6	03-25.5- HS WG	2 MW-18-56-HS W &	1 MM-100-HS M B	SAMPLE ID Waste Water Waste Water Waste Water Waste Water Winder Winder	to left)		d Due Date/TAT: STD Project Number:	Project Name:	Stok p. Com Purchase Order No.:) · Aconil	DullOSTECHADLOYD,	Company: WSP Report To: Robert.	Section A Section B Required Client Information: Required Project Information:
SIGNATI	SAMPLER NAME	1			RELINQUISHED BY / AFFILIATION		3/21/16 1215			3/21/16 1035	3/21/16 1015	3/21/16 1000	3/21/16 0405	0000 11/1CK	•	3/21/160500	3416 07KS	COMPOSITE COM START END DATE TIME DATE	COLLECTED			Kop-Flex	3705-29			Wallace @	mation:
PRINT Name of SAMPLER: 代記				3/21/16 16	DATE	2	6	2	3	6	N	6	N	rk	7	اها	Ø	COMPOSITE ENDIFRAB TIME SAMPLE TEMP AT COLLECTION # OF CONTAINERS	ı		Pace P	Pace Project Manager:	Pace Quote Reference:	Address:		MSP SHOW P COM Attention:	Section C Invoice Info
to mallace compo				1636 RP Ruce	TIME ACCEPTED	_ X,	X	×	×	X	X	X	X	×	X	X'	X	Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	Preservatives		Pace Profile #:	roject er:	luote nce:	ss:	Company Name:	ion:	Section C Invoice Information:
DATE Signed 7				HUL	EPTED BY / AFFILIATION	XX	X	XX	X	X X	XX	×	X	×	X	×	X	Analysis Test	Y/N	1							
241/16				Jr23-5	DATE															Requested Analysis Filtered (Y/N)	STATE:	Site Location	□ UST □	NPDES	REGULATORY AGENCY		
Temp i	n °C			346	TIME															(N/X)	K1218	D 77. 72	RCRA	GROUND WATER	AGENCY		Page:
Receive Ice (Y Custo Sealed (dy Cooler			X X A	SAMPLE CONDITIONS	011	00	009	208	7.00	006	006	Pa0	100	003	000	001	Residual Chlorine (Y/N) Pace Project No./ L:	allon I sake				C OTHER	٦		2055/	7
Samples (Y/N	Intact		_	X	SNOITK													92290859 Pace Project No./ Lab I.D.					R MDE	DRINKING WATER)]) Page

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any hybices not

F-ALL-Q-020rev.07, 15-May-2007

CHAIN-OF-CUSTODY / Analytical Request Document

								12	11	10	9	œ	7	6	۲٦	4	ω	2		ITEM#		7	Req	, a	Ema	5	Add	Con	Sec	
							ADDITIONAL COMMENTS							ď				EB-032116	Tripolar	AMPLE ID (A-Z, 0-9 / -) IDs MUST BE UNIQUE	Section D Required Client Information		Requested Due Date/TAT:	TI	of hellace O WSP	Horndon	Address: 13530 Dr. 1/0 5 Tech.	Company: WSP	Section A Required Client Information:	Pace Analytical www.pacelabs.com
	(ORIGINAL				1									16					Unnking Water DW Water WT Waste Water WW Product P Soil/Soild SL Oil OL Wipe AR Tissue TS Other OT	© d		Project	_		010	Copy To:	Report To:	Section Requi	
	í	A			,	R	2	_		_			-		_			Σ	٤	MATRIX CODE (see valid codes		\cdot	Project Number:	Project Name:	ise Ord		1		on B red Pro	
				1	/	4	ELING											5	1	SAMPLE TYPE (G=GRAB C=C		\mathbf{I}	er:	X	er No.:			obe	ject Inf	
							NSHED 8										,	3/21/16	000	g			,	SO FIEX	Purchase Order No.: 570 S			t.Wa	Section B Required Project Information:	
		SAMPL					RELINQUISHED BY I AFFILIATION												Provid	START START	COL			5.5	-29			Robert, Wallare DUS Paporpico~		
SIGNAT	PRINT N	SAMPLER NAME AND SIGNATURE					TION												ded.	п	COLLECTED							Pasno		The Ch
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	AND SIGI				1630	D,													COMPOSITE ENDIGRAB								ים היםיני		The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.
MPLEF	MPLEF	NATU				0	DATE								\dashv				Z.	SAMPLE TEMP AT COLLECTION	_							3		tody is
יא	ارة دة	RE			_	W								\dashv		\exists		6	7	# OF CONTAINERS		1	Pac	Pac Mar	Pac Refe	Ado	Cor	Atte	Se	a LE
	8				-	31/15/2	TIME											•	- 00	Unpreserved		ł	Pace Profile #:	e Projec lager:	Pace Quote Reference:	Address:	Company Name:	Attention:	Section C Invoice Information:	GAL D
			_		-	•			- 6						_					H ₂ SO ₄ HNO ₃] _D		#	14			Name		C formati	OCUI
10)) (2												χ	X	HCI	Preservatives								on:	MENT
1	0.00					-	AC		-				-		\dashv	\dashv	_			NaOH Na ₂ S ₂ O ₃	ative									. All re
A						Pau	CEPT													Methanol	Š									evan
	5					6	ACCEPTED BY / AFFILIATION		_	_					_			54		Other ↓ Analysis Test ↓	Y/N.	\vdash								t field:
₹ P	261				ŀ	H	Y / AF		П	\neg		П		Т		П	_	X	X	VOCA (8260)	1	1,								s mus
IM/DD	3					2	FILIAT								_			X	X	1,4-Dioxane (8060 4/5)		equ								t be co
gned (YY):	Bar					1	NOI				-	-		+					_		\vdash	estec								omple
DATE Signed 3/2 1/1C	500																					Requested Analysis Filtered (Y/N)	1	Si	٦	T	R			ted ac
1	7					200	DΑ	_	\dashv		_		_		_						_	lysis	ST	Site Location	UST	NP	REGULATORY AGENCY			curate
5	2 2					3/2	DATE		1			-		+								Filte	STATE:	ation	7	NPDES	ATOF			, y
						0	_															red		٦	٦	٦	RY A			
					ŀ	3	TIME															(N/A)	3		RCRA	GR	GEN		1 -	7
	!					0			-	-		-		+		\dashv							D		Š	JUND	악		Page:	
Ten	np in	°C				÷														Residual Chlorine (Y/N)			ļ-			GROUND WATER				
	eived e (Y/N				-	4.	SAME											210	E10	92					X	TER		907		
Seale	ustod ed Co Y/N)	oler				4	SAMPLE CONDITIONS						7			==				97290859 Pace Project No	25					DRINK		7/50	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	
Samp (iles Ir Y/N)	ntact				×	TIONS													92290859 Pace Project No./ Lab I.D.					OTHER MAD	ING WATER		00)	47 of 47

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

April 04, 2016

Eric Johnson WSP Environmental Strategies 11190 Sunrise Valley Dr. Suite #300 Reston, VA 20191

RE: Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Dear Eric Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on March 25, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Godwin

kevin.godwin@pacelabs.com

Project Manager

X ~ Dod-

Enclosures

cc: Keith Green, WSP Environmental Strategies

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE SUMMARY

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92291412001	MW-24D-HS	Water	03/22/16 13:15	03/25/16 09:55

SAMPLE ANALYTE COUNT

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Lab ID	Sample ID	Method	Analysts	Analytes Analysts Reported		
92291412001	MW-24D-HS	EPA 8260	NB	64	PASI-C	
		EPA 8260B Mod.	DLK	3	PASI-C	

ANALYTICAL RESULTS

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

Sample: MW-24D-HS	Lab ID: 92291412001		Collected: 03/22/1	Collected: 03/22/16 13:15		03/25/16 09:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV Low Level	Analytical Met	hod: EPA 82	260					
Acetone	ND	ug/L	312	12.5		03/28/16 08:34	67-64-1	
Benzene	ND	ug/L	12.5	12.5		03/28/16 08:34	71-43-2	
Bromobenzene	ND	ug/L	12.5	12.5		03/28/16 08:34	108-86-1	
Bromochloromethane	ND	ug/L	12.5	12.5		03/28/16 08:34	74-97-5	
Bromodichloromethane	ND	ug/L	12.5	12.5		03/28/16 08:34	75-27-4	
Bromoform	ND	ug/L	12.5	12.5		03/28/16 08:34	75-25-2	
Bromomethane	ND	ug/L	25.0	12.5		03/28/16 08:34	74-83-9	
P-Butanone (MEK)	ND	ug/L	62.5	12.5		03/28/16 08:34	78-93-3	
Carbon tetrachloride	ND	ug/L	12.5	12.5		03/28/16 08:34	56-23-5	
Chlorobenzene	ND	ug/L	12.5	12.5		03/28/16 08:34	108-90-7	
Chloroethane	ND	ug/L	12.5	12.5		03/28/16 08:34	75-00-3	
Chloroform	ND	ug/L	12.5	12.5		03/28/16 08:34	67-66-3	
Chloromethane	ND	ug/L	12.5	12.5		03/28/16 08:34	74-87-3	
-Chlorotoluene	ND	ug/L	12.5	12.5		03/28/16 08:34	95-49-8	
-Chlorotoluene	ND	ug/L	12.5	12.5		03/28/16 08:34	106-43-4	
,2-Dibromo-3-chloropropane	ND	ug/L	25.0	12.5		03/28/16 08:34	96-12-8	
Dibromochloromethane	ND	ug/L	12.5	12.5		03/28/16 08:34	124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	12.5	12.5		03/28/16 08:34	106-93-4	
libromomethane	ND	ug/L	12.5	12.5		03/28/16 08:34		
.2-Dichlorobenzene	ND	ug/L	12.5	12.5		03/28/16 08:34		
,3-Dichlorobenzene	ND	ug/L	12.5	12.5		03/28/16 08:34		
,4-Dichlorobenzene	ND	ug/L	12.5	12.5		03/28/16 08:34		
Dichlorodifluoromethane	ND	ug/L	12.5	12.5		03/28/16 08:34		
,1-Dichloroethane	68.2	ug/L	12.5	12.5		03/28/16 08:34		
,2-Dichloroethane	ND	ug/L	12.5	12.5		03/28/16 08:34		
,1-Dichloroethene	1280	ug/L	12.5	12.5		03/28/16 08:34		
is-1,2-Dichloroethene	ND	ug/L	12.5	12.5		03/28/16 08:34		
rans-1,2-Dichloroethene	ND	ug/L	12.5	12.5		03/28/16 08:34		
,2-Dichloropropane	ND	ug/L	12.5	12.5		03/28/16 08:34		
,3-Dichloropropane	ND	ug/L	12.5	12.5		03/28/16 08:34		
,2-Dichloropropane	ND	ug/L	12.5	12.5		03/28/16 08:34		
,1-Dichloropropene	ND	ug/L	12.5	12.5		03/28/16 08:34		
is-1,3-Dichloropropene	ND	ug/L	12.5	12.5		03/28/16 08:34		
rans-1,3-Dichloropropene	ND	ug/L	12.5	12.5		03/28/16 08:34		
Diisopropyl ether	ND	ug/L	12.5	12.5		03/28/16 08:34		
,4-Dioxane (p-Dioxane)	ND	ug/L	1880	12.5		03/28/16 08:34		L2
thylbenzene	ND	ug/L	12.5	12.5		03/28/16 08:34		
lexachloro-1,3-butadiene	ND	ug/L	12.5	12.5		03/28/16 08:34		
-Hexanone	ND	ug/L	62.5	12.5		03/28/16 08:34		
-Isopropyltoluene	ND	ug/L	12.5	12.5		03/28/16 08:34		
lethylene Chloride	ND	ug/L	25.0	12.5		03/28/16 08:34		
-Methyl-2-pentanone (MIBK)	ND ND	ug/L	62.5	12.5		03/28/16 08:34		
Methyl-tert-butyl ether	ND ND	ug/L	12.5	12.5		03/28/16 08:34		
laphthalene	ND ND	ug/L ug/L	12.5	12.5		03/28/16 08:34		
Styrene	ND ND	•	12.5	12.5		03/28/16 08:34		
,1,1,2-Tetrachloroethane	ND ND	ug/L	12.5	12.5		03/28/16 08:34		
,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	12.5	12.5		03/28/16 08:34		

ANALYTICAL RESULTS

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

Sample: MW-24D-HS	Lab ID: 9229	91412001	Collected: 03/22/1	16 13:15	Received: 03/2	5/16 09:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Meth	nod: EPA 82	260					
Tetrachloroethene	ND	ug/L	12.5	12.5	C	3/28/16 08:34	127-18-4	
Toluene	ND	ug/L	12.5	12.5	C	3/28/16 08:34	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	12.5	12.5	C	3/28/16 08:34	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	12.5	12.5	C	3/28/16 08:34	120-82-1	
1,1,1-Trichloroethane	28.0	ug/L	12.5	12.5	C	3/28/16 08:34	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	12.5	12.5	C	3/28/16 08:34	79-00-5	
Trichloroethene	ND	ug/L	12.5	12.5	C	3/28/16 08:34	79-01-6	
Trichlorofluoromethane	ND	ug/L	12.5	12.5	C	3/28/16 08:34	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	12.5	12.5	C	3/28/16 08:34	96-18-4	
Vinyl acetate	ND	ug/L	25.0	12.5	C	3/28/16 08:34	108-05-4	
Vinyl chloride	ND	ug/L	12.5	12.5	C	3/28/16 08:34	75-01-4	
Xylene (Total)	ND	ug/L	25.0	12.5	C	3/28/16 08:34	1330-20-7	
m&p-Xylene	ND	ug/L	25.0	12.5	C	3/28/16 08:34	179601-23-1	
o-Xylene	ND	ug/L	12.5	12.5	C	3/28/16 08:34	95-47-6	
Surrogates		Ū						
4-Bromofluorobenzene (S)	96	%	70-130	12.5	C	3/28/16 08:34	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130	12.5	C	3/28/16 08:34	17060-07-0	
Toluene-d8 (S)	99	%	70-130	12.5	C	3/28/16 08:34	2037-26-5	
8260 MSV SIM	Analytical Meth	nod: EPA 82	260B Mod.					
1,4-Dioxane (p-Dioxane) Surrogates	452	ug/L	10.0	5	C	04/02/16 20:35	5 123-91-1	
1,2-Dichloroethane-d4 (S)	98	%	50-150	5	C	04/02/16 20:35	17060-07-0	
Toluene-d8 (S)	101	%	50-150	5	C	04/02/16 20:35	2037-26-5	

(704)875-9092

QUALITY CONTROL DATA

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

QC Batch: MSV/36153 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Low Level

Associated Lab Samples: 92291412001

METHOD BLANK: 1696034 Matrix: Water

Associated Lab Samples: 92291412001

	Blank Rep		Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	03/28/16 03:02	
1,1,1-Trichloroethane	ug/L	ND	1.0	03/28/16 03:02	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	03/28/16 03:02	
1,1,2-Trichloroethane	ug/L	ND	1.0	03/28/16 03:02	
1,1-Dichloroethane	ug/L	ND	1.0	03/28/16 03:02	
1,1-Dichloroethene	ug/L	ND	1.0	03/28/16 03:02	
1,1-Dichloropropene	ug/L	ND	1.0	03/28/16 03:02	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	03/28/16 03:02	
1,2,3-Trichloropropane	ug/L	ND	1.0	03/28/16 03:02	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	03/28/16 03:02	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.0	03/28/16 03:02	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	03/28/16 03:02	
1,2-Dichlorobenzene	ug/L	ND	1.0	03/28/16 03:02	
1,2-Dichloroethane	ug/L	ND	1.0	03/28/16 03:02	
1,2-Dichloropropane	ug/L	ND	1.0	03/28/16 03:02	
1,3-Dichlorobenzene	ug/L	ND	1.0	03/28/16 03:02	
1,3-Dichloropropane	ug/L	ND	1.0	03/28/16 03:02	
1,4-Dichlorobenzene	ug/L	ND	1.0	03/28/16 03:02	
1,4-Dioxane (p-Dioxane)	ug/L	ND	150	03/28/16 03:02	
2,2-Dichloropropane	ug/L	ND	1.0	03/28/16 03:02	
2-Butanone (MEK)	ug/L	ND	5.0	03/28/16 03:02	
2-Chlorotoluene	ug/L	ND	1.0	03/28/16 03:02	
2-Hexanone	ug/L	ND	5.0	03/28/16 03:02	
4-Chlorotoluene	ug/L	ND	1.0	03/28/16 03:02	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	03/28/16 03:02	
Acetone	ug/L	ND	25.0	03/28/16 03:02	
Benzene	ug/L	ND	1.0	03/28/16 03:02	
Bromobenzene	ug/L	ND	1.0	03/28/16 03:02	
Bromochloromethane	ug/L	ND	1.0	03/28/16 03:02	
Bromodichloromethane	ug/L	ND	1.0	03/28/16 03:02	
Bromoform	ug/L	ND	1.0	03/28/16 03:02	
Bromomethane	ug/L	ND	2.0	03/28/16 03:02	
Carbon tetrachloride	ug/L	ND	1.0	03/28/16 03:02	
Chlorobenzene	ug/L	ND	1.0	03/28/16 03:02	
Chloroethane	ug/L	ND	1.0	03/28/16 03:02	
Chloroform	ug/L	ND	1.0	03/28/16 03:02	
Chloromethane	ug/L	ND	1.0	03/28/16 03:02	
cis-1,2-Dichloroethene	ug/L	ND	1.0	03/28/16 03:02	
cis-1,3-Dichloropropene	ug/L	ND	1.0	03/28/16 03:02	
Dibromochloromethane	ug/L	ND	1.0	03/28/16 03:02	
Dibromomethane	ug/L	ND	1.0	03/28/16 03:02	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

METHOD BLANK: 1696034 Matrix: Water

Associated Lab Samples: 92291412001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	03/28/16 03:02	
Diisopropyl ether	ug/L	ND	1.0	03/28/16 03:02	
Ethylbenzene	ug/L	ND	1.0	03/28/16 03:02	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	03/28/16 03:02	
m&p-Xylene	ug/L	ND	2.0	03/28/16 03:02	
Methyl-tert-butyl ether	ug/L	ND	1.0	03/28/16 03:02	
Methylene Chloride	ug/L	ND	2.0	03/28/16 03:02	
Naphthalene	ug/L	ND	1.0	03/28/16 03:02	
o-Xylene	ug/L	ND	1.0	03/28/16 03:02	
p-Isopropyltoluene	ug/L	ND	1.0	03/28/16 03:02	
Styrene	ug/L	ND	1.0	03/28/16 03:02	
Tetrachloroethene	ug/L	ND	1.0	03/28/16 03:02	
Toluene	ug/L	ND	1.0	03/28/16 03:02	
trans-1,2-Dichloroethene	ug/L	ND	1.0	03/28/16 03:02	
trans-1,3-Dichloropropene	ug/L	ND	1.0	03/28/16 03:02	
Trichloroethene	ug/L	ND	1.0	03/28/16 03:02	
Trichlorofluoromethane	ug/L	ND	1.0	03/28/16 03:02	
Vinyl acetate	ug/L	ND	2.0	03/28/16 03:02	
Vinyl chloride	ug/L	ND	1.0	03/28/16 03:02	
Xylene (Total)	ug/L	ND	2.0	03/28/16 03:02	
1,2-Dichloroethane-d4 (S)	%	99	70-130	03/28/16 03:02	
4-Bromofluorobenzene (S)	%	97	70-130	03/28/16 03:02	
Toluene-d8 (S)	%	100	70-130	03/28/16 03:02	

LABORATORY CONTROL SAMPLE:	1696035					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	47.5	95	70-130	
1,1,1-Trichloroethane	ug/L	50	45.4	91	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	49.3	99	70-130	
1,1,2-Trichloroethane	ug/L	50	47.2	94	70-130	
1,1-Dichloroethane	ug/L	50	44.7	89	70-130	
1,1-Dichloroethene	ug/L	50	46.4	93	70-132	
1,1-Dichloropropene	ug/L	50	47.1	94	70-130	
1,2,3-Trichlorobenzene	ug/L	50	49.5	99	70-135	
1,2,3-Trichloropropane	ug/L	50	48.5	97	70-130	
1,2,4-Trichlorobenzene	ug/L	50	49.0	98	70-134	
1,2-Dibromo-3-chloropropane	ug/L	50	52.5	105	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	50.7	101	70-130	
1,2-Dichlorobenzene	ug/L	50	45.4	91	70-130	
1,2-Dichloroethane	ug/L	50	41.7	83	70-130	
1,2-Dichloropropane	ug/L	50	45.7	91	70-130	
1,3-Dichlorobenzene	ug/L	50	46.6	93	70-130	
1,3-Dichloropropane	ug/L	50	47.1	94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

LABORATORY CONTROL SAMPL	E: 1696035				
_		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifie
1,4-Dichlorobenzene	ug/L	50	46.7	93	70-130
1,4-Dioxane (p-Dioxane)	ug/L	1000	518	52	71-125 L0
2,2-Dichloropropane	ug/L	50	41.5	83	58-145
2-Butanone (MEK)	ug/L	100	99.6	100	70-145
2-Chlorotoluene	ug/L	50	41.9	84	70-130
2-Hexanone	ug/L	100	100	100	70-144
I-Chlorotoluene	ug/L	50	45.4	91	70-130
-Methyl-2-pentanone (MIBK)	ug/L	100	107	107	70-140
Acetone	ug/L	100	94.4	94	50-175
Benzene	ug/L	50	47.3	95	70-130
Bromobenzene	ug/L	50	45.2	90	70-130
romochloromethane	ug/L	50	46.0	92	70-130
Bromodichloromethane	ug/L	50	46.9	94	70-130
Bromoform	ug/L	50	39.0	78	70-130
Bromomethane	ug/L	50	43.6	87	54-130
Carbon tetrachloride	ug/L	50	47.7	95	70-132
Chlorobenzene	ug/L	50	46.0	92	70-130
Chloroethane	ug/L	50	42.6	85	64-134
Chloroform	ug/L	50	44.9	90	70-130
Chloromethane	ug/L	50	40.3	81	64-130
is-1,2-Dichloroethene	ug/L	50	45.3	91	70-131
is-1,3-Dichloropropene	ug/L	50	46.9	94	70-130
Dibromochloromethane	ug/L	50	45.7	91	70-130
Dibromomethane	ug/L	50	48.7	97	70-131
Dichlorodifluoromethane	ug/L	50	41.9	84	56-130
Diisopropyl ether	ug/L	50	47.5	95	70-130
thylbenzene	ug/L	50	46.1	92	70-130
lexachloro-1,3-butadiene	ug/L	50	46.6	93	70-130
n&p-Xylene	ug/L	100	90.8	91	70-130
Methyl-tert-butyl ether	ug/L	50	48.2	96	70-130
Methylene Chloride	ug/L	50	44.4	89	63-130
laphthalene	ug/L	50	50.9	102	70-138
-Xylene	ug/L	50	45.0	90	70-130
-Isopropyltoluene	ug/L	50	46.5	93	70-130
Styrene	ug/L	50	46.2	92	70-130
etrachloroethene	ug/L	50	46.9	94	70-130
oluene	ug/L	50	45.9	92	70-130
rans-1,2-Dichloroethene	ug/L	50	47.8	96	70-130
rans-1,3-Dichloropropene	ug/L	50	46.8	94	70-132
richloroethene	ug/L	50	45.7	91	70-130
richlorofluoromethane	ug/L	50	47.5	95	62-133
inyl acetate	ug/L	100	86.9	87	66-157
/inyl chloride	ug/L	50	47.7	95	50-150
(ylene (Total)	ug/L	150	136	91	70-130
,2-Dichloroethane-d4 (S)	%			97	70-130
-Bromofluorobenzene (S)	%			102	70-130
Foluene-d8 (S)	%			99	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

MATRIX SPIKE SAMPLE:	1696036	92291474010	Spike	MS	MS	% Rec
Parameter	Units	Result	Conc.	Result	% Rec	Limits Qualifie
1,1,1,2-Tetrachloroethane	 ug/L	ND		18.4	92	70-130
1,1,1-Trichloroethane	ug/L	ND	20	20.7	104	70-130
1,1,2,2-Tetrachloroethane	ug/L	ND	20	17.1	85	70-130
1,1,2-Trichloroethane	ug/L	ND	20	18.9	94	70-130
1,1-Dichloroethane	ug/L	1.9	20	22.3	102	70-130
1,1-Dichloroethene	ug/L	ND	20	20.9	104	70-166
1,1-Dichloropropene	ug/L	ND	20	20.7	103	70-130
1,2,3-Trichlorobenzene	ug/L	ND	20	18.4	92	70-130
1,2,3-Trichloropropane	ug/L	ND	20	17.4	87	70-130
1,2,4-Trichlorobenzene	ug/L	ND	20	19.4	97	70-130
1,2-Dibromo-3-chloropropane	ug/L	ND	20	15.8	79	70-130
1,2-Dibromoethane (EDB)	ug/L	ND	20	19.3	97	70-130
1,2-Dichlorobenzene	ug/L	ND	20	18.4	92	70-130
1,2-Dichloroethane	ug/L	ND	20	18.0	89	70-130
1,2-Dichloropropane	ug/L	ND	20	20.0	100	70-130
1,3-Dichlorobenzene	ug/L	ND	20	19.9	99	70-130
1,3-Dichloropropane	ug/L	ND	20	18.1	91	70-130
1,4-Dichlorobenzene	ug/L	ND	20	18.9	95	70-130
1,4-Dioxane (p-Dioxane)	ug/L	ND	400	ND	4	70-130 M0
2,2-Dichloropropane	ug/L	ND	20	15.9	80	70-130 Mo
2-Butanone (MEK)	ug/L	ND	40	30.8	77	70-130
2-Chlorotoluene	ug/L	ND	20	19.8	99	70-130
2-Hexanone	ug/L	ND	40	30.9	77	70-130
4-Chlorotoluene	ug/L	ND	20	19.1	95	70-130
4-Methyl-2-pentanone (MIBK)	ug/L	ND ND	40	35.1	88	70-130
Acetone (MIDIC)	ug/L	ND	40	30.3	76	70-130
Benzene	ug/L	ND	20	20.1	101	70-130
Bromobenzene	ug/L ug/L	ND ND	20	19.0	95	70-146 70-130
Bromochloromethane	ug/L ug/L	ND ND	20	20.1	101	70-130 70-130
Bromodichloromethane		ND ND	20	19.2	96	70-130 70-130
Bromoform	ug/L	ND ND	20	16.0	80	70-130 70-130
	ug/L	ND ND				
Bromomethane	ug/L	ND ND	20	22.5	113	70-130 70-130
Carbon tetrachloride	ug/L	ND ND	20	19.5	97	
Chlorobenzene	ug/L	ND ND	20	19.0	95 108	70-146
Chloroethane Chloroform	ug/L	ND ND	20 20	21.6	108	70-130
	ug/L	ND ND		19.1	96	70-130
Chloromethane	ug/L	11.6	20	18.8	94	70-130
cis-1,2-Dichloroethene	ug/L	ND	20	32.9	107	70-130
cis-1,3-Dichloropropene	ug/L		20	18.1	90	70-130
Dibromochloromethane	ug/L	ND	20	17.7	88	70-130
Dibromomethane	ug/L	ND	20	19.3	97	70-130
Dichlorodifluoromethane	ug/L	ND	20	19.9	99	70-130
Diisopropyl ether	ug/L	ND	20	19.6	98	70-130
Ethylbenzene	ug/L	ND	20	18.8	93	70-130
Hexachloro-1,3-butadiene	ug/L	ND	20	18.4	92	70-130
m&p-Xylene	ug/L	ND	40	36.6	90	70-130
Methyl-tert-butyl ether	ug/L	ND	20	19.5	98	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

MATRIX SPIKE SAMPLE:	1696036						
		92291474010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Methylene Chloride	ug/L	ND	20	20.0	100	70-130	
Naphthalene	ug/L	ND	20	17.3	87	70-130	
o-Xylene	ug/L	0.25J	20	18.0	89	70-130	
p-Isopropyltoluene	ug/L	ND	20	19.2	96	70-130	
Styrene	ug/L	ND	20	17.8	89	70-130	
Tetrachloroethene	ug/L	1.8	20	20.8	95	70-130	
Toluene	ug/L	ND	20	19.3	97	70-155	
trans-1,2-Dichloroethene	ug/L	ND	20	21.7	108	70-130	
trans-1,3-Dichloropropene	ug/L	ND	20	17.3	87	70-130	
Trichloroethene	ug/L	3.3	20	22.5	96	69-151	
Trichlorofluoromethane	ug/L	ND	20	21.4	107	70-130	
Vinyl acetate	ug/L	ND	40	26.4	66	70-130 M	1
Vinyl chloride	ug/L	ND	20	22.4	112	70-130	
1,2-Dichloroethane-d4 (S)	%				97	70-130	
4-Bromofluorobenzene (S)	%				96	70-130	
Toluene-d8 (S)	%				101	70-130	

SAMPLE DUPLICATE: 1696037						
		92291474012	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	ND		30	
1,1,1-Trichloroethane	ug/L	ND	ND		30	
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		30	
1,1,2-Trichloroethane	ug/L	ND	ND		30	
1,1-Dichloroethane	ug/L	ND	ND		30	
1,1-Dichloroethene	ug/L	ND	ND		30	
1,1-Dichloropropene	ug/L	ND	ND		30	
1,2,3-Trichlorobenzene	ug/L	ND	ND		30	
1,2,3-Trichloropropane	ug/L	ND	ND		30	
1,2,4-Trichlorobenzene	ug/L	ND	ND		30	
1,2-Dibromo-3-chloropropane	ug/L	ND	ND		30	
1,2-Dibromoethane (EDB)	ug/L	ND	ND		30	
1,2-Dichlorobenzene	ug/L	ND	ND		30	
1,2-Dichloroethane	ug/L	ND	ND		30	
1,2-Dichloropropane	ug/L	ND	ND		30	
1,3-Dichlorobenzene	ug/L	ND	ND		30	
1,3-Dichloropropane	ug/L	ND	ND		30	
1,4-Dichlorobenzene	ug/L	ND	ND		30	
1,4-Dioxane (p-Dioxane)	ug/L	ND	ND		30	
2,2-Dichloropropane	ug/L	ND	ND		30	
2-Butanone (MEK)	ug/L	ND	ND		30	
2-Chlorotoluene	ug/L	ND	ND		30	
2-Hexanone	ug/L	ND	ND		30	
4-Chlorotoluene	ug/L	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

SAMPLE DUPLICATE: 1696037						
		92291474012	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Acetone	ug/L		ND		30	
Benzene	ug/L	ND	ND		30	
Bromobenzene	ug/L	ND	ND		30	
Bromochloromethane	ug/L	ND	ND		30	
Bromodichloromethane	ug/L	ND	ND		30	
Bromoform	ug/L	ND	ND		30	
Bromomethane	ug/L	ND	ND		30	
Carbon tetrachloride	ug/L	ND	ND		30	
Chlorobenzene	ug/L	ND	ND		30	
Chloroethane	ug/L	ND	ND		30	
Chloroform	ug/L	ND	ND		30	
Chloromethane	ug/L	ND	ND		30	
cis-1,2-Dichloroethene	ug/L	ND	ND		30	
cis-1,3-Dichloropropene	ug/L	ND	ND		30	
Dibromochloromethane	ug/L	ND	ND		30	
Dibromomethane	ug/L	ND	ND		30	
Dichlorodifluoromethane	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
Hexachloro-1,3-butadiene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Methylene Chloride	ug/L	ND	ND		30	
Naphthalene	ug/L	ND	ND		30	
o-Xylene	ug/L	ND	ND		30	
p-Isopropyltoluene	ug/L	ND	ND		30	
Styrene	ug/L	ND	ND		30	
Tetrachloroethene	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
trans-1,2-Dichloroethene	ug/L	ND	ND		30	
trans-1,3-Dichloropropene	ug/L	ND	ND		30	
Trichloroethene	ug/L	ND	ND		30	
Trichlorofluoromethane	ug/L	ND	ND		30	
Vinyl acetate	ug/L	ND	ND		30	
Vinyl chloride	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	95	96	1		
4-Bromofluorobenzene (S)	%	98	97	1		
Toluene-d8 (S)	%	100	98	2		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

QC Batch: MSV/36221 Analysis Method: EPA 8260B Mod.
QC Batch Method: EPA 8260B Mod. Analysis Description: 8260 MSV SIM

Associated Lab Samples: 92291412001

METHOD BLANK: 1700673 Matrix: Water

Associated Lab Samples: 92291412001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND	2.0	04/02/16 13:10	
1,2-Dichloroethane-d4 (S)	%	99	50-150	04/02/16 13:10	
Toluene-d8 (S)	%	101	50-150	04/02/16 13:10	

LABORATORY CONTROL SAMPLE: 1700674

Date: 04/04/2016 03:24 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L		19.0	95	71-125	
1,2-Dichloroethane-d4 (S)	%			97	50-150	
Toluene-d8 (S)	%			100	50-150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether, Styrene, and Vinyl chloride.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 04/04/2016 03:24 PM

L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 3705/28 KOP FLEX HANOVER, MD

Pace Project No.: 92291412

Date: 04/04/2016 03:24 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92291412001	MW-24D-HS	EPA 8260	MSV/36153		
92291412001	MW-24D-HS	EPA 8260B Mod.	MSV/36221		

Pace Analytical®

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CHR-CS-003-rev.18

Document Revised: 18FEB2016 Page 1 of 2

Issuing Authority:
Pace Huntersville Quality Office

Page 2 of 2 for Internal Lice ONLY

Sample Condition Upon Receipt	Client Name:	>			Pro	oject #:			2914	412
Courier: Commercial	Fed Ex UPS Pace	□USF □Oth			Clien	t	922914			
Custody Seal Present?	☐Yes ☐No Seal	s Intact?	□Y€	es [□No					W 3-3
Thermometer:	□T1505 □	ubble Bags Type of		one Wet	□Ot □Blue	e 🗆	None	Sample		ng process has begun
Correction Factor: 0.0°C Temp should be above freez USDA Regulated Soil (Note of the samples originate in a quality of the samples or the samples	/A, water sample)	-	, NY, or s	SC (check	maps)?	Did		ginate from a i and Puerto	Rico)? Yes	□No □N/A e (internationally, □No
Chain of Custody Present?		Yes	□No	□N/A	1.			COMMEN	15:	
Chain of Custody Filled Out?	1		- Contract		1					
Chain of Custody Relinquished	12	Yes	□No □No	□N/A	3.					
		Yes		□N/A						
Sampler Name and/or Signatu Samples Arrived within Hold T		☐Yes	□No	□N/A □N/A	4. 5.					
Short Hold Time Analysis (<72	8 - 5/8	□Yes			6.					
Rush Turn Around Time Requ		□Yes	_ No	□N/A	7.					
Sufficient Volume?	esteu:	_/			8.					
Correct Containers Used?		✓ Yes ✓ Yes	□No		9.					
-Pace Containers Used?			222] 3.					
Containers Intact?		☐Yes	No	□N/A	10					
	Discolar difference	☐Yes ☐	□No	□N/A	10.	N-4-16		delle le de de	dia a dia a dia a dia	
Filtered Volume Received for I	Dissolved Tests?	□Yes	□No	□N/A	i	Note if s	sealment is \	isible in the	dissolved cor	itainer
Sample Labels Match COC?		✓Yes	□No	□n/a	12.				80	
 -Includes Date/Time/ID/An All containers needing acid/bachecked? All containers needing preserve compliance with EPA recomm 	alysis Matrix: ase preservation have been vation are found to be in	□Yes	□No	□n/a	13.	1	2			• ,, - 2
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9		☐Yes	□No	□N/A						
Exceptions: VOA, Coliform, TO DRO/8015 (water) DOC, LLHg	C, Oil and Grease,	DV	□ Na	□N/A						
Samples checked for dechloring	nation	☐Yes ☐Yes	□No □No	□N/A □N/A	14.					
Headspace in VOA Vials (>5-6		☐Yes		□N/A	15.					
Trip Blank Present?		□Yes	□No	□N/A	1				<u> </u>	
Trip Blank Custody Seals Prese	ent?	□Yes	□No	□N/A						
Pace Trip Blank Lot # (if purch	ased):									
CLIENT NO	TIFICATION/RESOLUTION			ė				Field Da	ata Required?	□Yes □No
Person Contacted:						Date/Ti	me:			
Comments/Resolution:										
Project Manager SCUF	Review:					-	Date:	3/25/14	,	
	screpancy affecting North Carol rative, out of temp, incorrect co		ce sampl	es, a copy	of this fo	orm will b	be sent to the	North Caro	ina DEHNR Ce	rtification Office (i.e.

Enclosure B – Historical Groundwater Sampling Results

Dec-12
D ND ND ND ND ND
D 19.7 1.80 166 NR ND D 19.7 1.80 147 NR ND D 18.6 1.50 139 NR ND
109.0 (h) ND NA ND 121.0 (n) ND NA ND 103.0 (n) ND NA ND 105.0 (n) ND NA ND
ND ND ND ND ND ND ND ND
15.9 ND ND ND ND 257 26.9 ND ND ND ND 335 20.2 ND ND ND ND 292

Monitoring	one	zene	noform	ıtanone (MEK)	vroethane	ıloroform	oromethane	Dichlorobenzene	Dichlorobenzene	-Dichlorobenzene	1-Dichloroethane	Dichloroethane	-Dichloroethene	Dichloroethene	1,2-Dichloroethene	⊦ Dioxane	/lbenzene	ropylbenzene	opropyltoluene	nylene Chloride	nyl-tert-butyl Ether	hthalene	achloroethene	eue	1,1-Trichloroethane	,2-Trichloroethane	hloroethene	ıl Chloride	ne (total)	otal VOCs
Well	Acel	Ben	Bro	2-Br	<u> </u>	<u> </u>	<u> </u>	1.2,1	1.3.	<u> </u>		1,2,1	<u>+, </u>	1.2.1	cis.	4,	Ethy	dosı	-d	Meth	Meth	Nap	Tetri	Tob		1,1,	Tric	Viny	Хује	Тоtа
Jun-15 (h) MW-5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	108.0	ND	516	NR	ND	332.0 (c)	ND	NA	ND	ND	ND	ND	ND	ND	32.3	ND	ND	ND	ND	988
May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-6	ND	ND N	ND N	ND N	ND N	ND N	9 11 12 8 7 4.1 7 3.4 3.3 2.9 3.0 2.8 3.1	ND	4 5 7 4 3 ND ND ND ND 2.2 1.5 1.9	ND ND ND ND NR NR NR NR NR NR NR	NR NR NR NR NR ND	NA NA NA NA 246 211 245 205.0 137.0 (h) 92.3 91.2 69.9	ND N	ND NA NA NA NA	NA ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND	6 6 5 5 4 ND 2.2 2.4 1.8 2.5 2.0 2.5	ND N	ND N	ND N	ND N	19 22 25 17 15 255 218 251 213 143 100 98 77				
May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-7	ND	ND N	ND N	ND	ND N	ND N	ND N	ND	ND N	ND ND ND ND NR NR NR NR NR NR NR NR	NR NR NR NR NR ND	NA NA NA NA NA ND	ND N	ND ND ND ND ND ND ND ND ND NA NA NA NA	NA NA NA NA NA NA NA NA NA ND ND ND ND	ND N	ND N	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N					
May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND	ND N	ND N	ND N	ND N	ND N	ND N	ND	ND	ND ND ND ND NR NR NR NR NR NR NR NR	NR NR NR NR NR ND	NA NA NA NA NA ND ND ND ND 2.4 ND 2.2 ND	ND N	ND NA NA NA	NA NA NA NA NA NA NA NA NA ND ND ND ND	ND N	ND N	ND N	ND N	ND N	ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	 2 2				
May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11 Jun-12 (g) Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-9	ND	ND N	ND N	ND N	ND N	ND ND ND 3 2 ND ND 1.1 1.2 ND ND ND	ND N	ND N	ND N	ND N	210 260 249 170 300 140 140 180 164 78.2 89.9 59.4 97.4	5 5 5 3 6 3 ND 4.1 4.4 2.00 1.90 1.60 2.10	250 310 240 200 350 190 150 210 208 129 142 111	1 1 1 ND 1 NR NR NR NR NR NR	NR NR NR NR ND	NA NA NA NA 361 445 418 456.0 254.0 (h) 219.0 (h) 190.0 249.0 (n)	ND N	ND N	NA ND ND ND ND ND	ND N	ND N	ND N	1 1 2 ND 1 ND ND ND ND 1.1 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	100 70 65 25 23 13 ND 9.0 6.4 4.7 3.3 2.0 3.6	ND N	4 4 4 3 4 2 ND 3.1 3.6 1.8 1.6 1.3 2.0	ND N	ND N	571 651 566 401 688 711 735 824 846 471 458 365 531
May-09 Oct-09 May-10 Jun-11 Nov-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 (g) MW-10 May-09	ND N	1 1 ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	17 18 16 16 14 8 12 10.9 10.5 8.5 11.1 6.1	2 ND 2 2 1 ND 1.2 1.30 1.20 1.40 ND	250 300 240 290 220 160 150 170 181 193 179 143	ND ND ND NR	NR NR NR ND	NA NA NA 86 71.3 69.2 69.5 97.7 (h) 53.9 (h) 96.1 58.6 (n)	ND N	ND ND ND ND ND ND ND NA NA NA NA	NA NA NA NA NA NA NA ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	16 13 10 10 8 6 5.5 6.4 4.6 ND 9.4 4.9	ND N	ND N	ND N	ND N	286 332 268 318 330 245 238 258 295 257 297 213				
Oct-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	ND	NR	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3

Monitoring Well	Acetone	3enzene	3romoform	-Butanone (MEK)	Chloroethane	Chloroform	Chloromethane	,2-Dichlorobenzene	,3-Dichlorobenzene	,4-Dichlorobenzene	,1-Dichloroethane	,2-Dichloroethane	,1-Dichloroethene	,2-Dichloroethene	is-1,2-Dichloroethene	,4- Dioxane	ethylbenzene	sopropylbenzene	o-Isopropyltoluene	Methylene Chloride	Methyl-tert-butyl Ether	Vaphthalene	Fetrachloroethene	Toluene	,1,1-Trichloroethane	,1,2-Trichloroethane	richloroethene	/inyl Chloride	(ylene (total)	rotal VOCs
May-10 Oct-10 Jun-11 Nov-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND ND ND	ND N	ND ND 4 ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	4 3 4 4 ND 2.4 2.9 1.9 2.3 2.1	ND ND NR NR NR NR NR NR	NR NR NR ND	NA NA NA ND 3.3 ND ND 3.4 13.1 2.4 ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND NA NA NA	NA NA NA NA NA NA ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND N	ND N	4 3 4 8 3 2 3 5 15 5
MW-11 May-09 Oct-09 May-10 Oct-10 Jun-11 Dec-11 Jun-12 (h) Dec-12 Jul-13 Dec-13 (c) Jun-14 (m) Dec-14 (c) Jun-15 (m)	ND N	ND N	ND N	ND N	ND 38 ND ND ND ND 40 11.6 38.1 ND ND	ND 2 ND ND ND ND 1.9 1.4 ND N	ND N	ND N	ND N	ND N	67 620 130 110 94 60 130 1,000 403 742.0 75.2 190.0 58.8	9 16 10 9 8 7 ND 20 13 12.80 4.90 ND	740 2,100 750 540 720 430 730 1,800 1,360 1,520 442 695 342	2 8 3 2 2 NR NR NR NR NR NR NR NR	NR NR NR NR NR ND 12 7.2 10.5 ND ND	NA NA NA NA 575 487 1,160 787.0 1,000.0 372.0 (c) 397.0 (c)	ND N	ND NA NA NA NA	NA NA NA NA NA NA NA NA NA ND ND ND ND ND	ND 4 ND ND ND ND ND ND 06.7 ND	ND N	ND N	ND 3 ND ND ND ND ND ND ND 4 1.6 ND	ND N	47 230 67 52 29 16 35 300 103 343.0 21.7 28.8 7.7	ND 2 ND ND ND ND ND ND ND ND ND 2.9 1 ND ND ND ND ND ND ND ND	4 13 5 5 3 ND ND 13 8.8 10.3 ND ND	ND 1 ND	ND N	869 3,037 965 718 856 1,088 1,382 4,360 2,699 3,677 925 1,311 723
MW-12 May-09 Oct-09 May-10 Oct-10 Jun-11 Nov-11 Jun-12 (c) Dec-12 Jul-13 Dec-13 (l) Jun-14 (c) Dec-14 (i) Jun-15 (i)	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	7 5 ND ND 11 6 ND 30 152 52 83.6 145.0 ND	2 1 ND ND 2 3 ND 2.0 2.1 ND ND	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	840 680 1,100 610 750 440 430 460 869 439.0 1,210.0 1,370.0 560.0	29 21 20 26 34 39 ND 31 39.2 26.20 43.50 ND	2,200 1,900 2,300 2,200 2,800 2,400 1,700 1,600 2,840 1,530 3,510 3,350 1,600	22 16 25 19 24 NR NR NR NR NR NR	NR NR NR NR 22 ND 19 35.2 ND 33.2 34.8 ND	NA NA NA NA 1,550 1,130 1,240 1,530.0 1,720.0 (i) 182.0 (n) 1,270.0 (n) 997.0	ND N	ND NA NA NA	NA ND ND ND ND	3 2 ND 3 2 ND ND 6.6 ND ND ND ND ND	ND N	ND N	4 3 4 3 3 3 3 ND 2.0 4 ND ND ND ND	ND N	120 87 160 110 110 85 63 48 77.2 41.8 125.0 78.8 59.4	3 2 ND 2 3 4 ND 3.3 3.2 ND ND ND	16 13 9 13 16 17 ND 13 16.7 ND 17.8 ND	2 2 3 2 2 2 ND ND 2.6 ND ND ND	ND N	3,248 2,732 3,621 2,985 3,758 4,573 3,323 3,448 5,578 3,809 5,205 6,286 3,216
MW-14 May-09 Oct-09 May-10 Oct-10 Jun-11 Nov-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND N	ND N	ND	ND N	ND	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND 3 5 5 5.8 5 ND 2.6 ND 2.2 ND ND	ND ND ND ND NR NR NR NR NR NR	NR NR NR NR NR NR ND	NA NA NA NA 6.9 7.4 3.6 3.0 ND 3.3 2.2 ND	ND N	ND N	NA ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND	ND N	 3 5 3 5 13 12 4 6 6 2
MW-15 Sep-10 Oct-10 Jun-11 Dec-11 Jun-12 (h) Dec-12 Jul-13 Dec-13 (g) Jun-14 (n) Dec-14 (m) Jun-15 (m)	ND N	ND N	ND N	ND N	4 ND 8 4 ND 11 ND 3 ND ND ND	1 ND	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	370 180 210 190 200 320 153 181.0 57.0 71.0 24.5	16 9 3 7 ND 5.2 ND 3.00 4.40 ND	1,300 670 300 530 500 540 465 289 433 (c) 318 313	9 5 2 NR NR NR NR NR NR	NR NR NR 3 ND 4.2 5.5 2.8 5.8 ND ND	NA NA 345 575 272 2,530.0 228.0 (h) 92.8 (g) 208.0 (n) 99.7 (n)	ND N	ND ND ND ND ND NA NA NA	NA NA NA NA NA NA NA ND ND ND ND ND	ND N	ND N	ND N	4 2 ND 1 ND 1.2 ND ND ND ND ND	ND N	27 22 51 48 47 150 43.2 107.0 13.7 20.7 6.7	2 ND	15 7 2 4.7 ND 5.2 ND 2.4 ND ND	1 ND ND ND ND ND ND ND ND ND	ND N	1,749 897 576 1,133 1,322 1,309 3,197 817 617 618 444
Sep-10 Oct-10 Jun-11 Dec-11 Jun-12 (f) Dec-12 Jul-13	ND ND ND ND ND ND 46.5	ND ND ND ND ND ND	ND ND ND ND ND ND	23 ND 23 ND 18 ND	480 660 560 ND 460 1,290	13 ND 7 ND 5.8 7.2	6 ND ND ND ND ND 2.7	3 ND ND 1.7 ND 1.3	ND ND ND ND ND 1.1	ND ND ND ND ND ND	8,300 4,900 3,400 8,200 4,300 14,000 3,600	57 42 ND 53 ND 52 61.3	16,000 12,000 19,000 18,000 11,000 14,000 17,900	67 52 ND NR NR NR	NR NR NR 59 ND 56 59.1	NA NA 1,930 2,050 1,740 2,260.0	22 ND ND 12 ND 7.6 9.9	10 ND ND 4.6 ND 3.3 NA	NA NA NA NA NA NA	28 ND ND 30 ND 30 29.5	ND ND ND ND ND ND	17 ND ND 7.1 ND 4.5	250 140 ND 110 ND 69 83.8	7 ND ND 4.2 ND 3.4 4.4	160,000 71,000 21,000 100,000 41,000 30,000 29,400	4 3 ND 3 ND 3.5 4.3	370 190 130 220 ND 160 ND	ND 6 ND 14 ND 9.2 17.7	101 ND ND 57 ND 36 46.2	185,758 88,333 44,190 129,295 58,350 60,661 54,832

Monitoring	etone	nzene	omoform	3utanone (MEK)	ıloroethane	ıloroform	ıloromethane	-Dichlorobenzene	-Dichlorobenzene	-Dichlorobenzene	-Dichloroethane	2-Dichloroethane	l-Dichloroethene	2-Dichloroethene	s-1,2-Dichloroethene	- Dioxane	hylbenzene	propylbenzene	sopropyltoluene	sthylene Chloride	sthyl-tert-butyl Ether	phthalene	trachloroethene	luene	',1-Trichloroethane	,2-Trichloroethane	ichloroethene	nyl Chloride	lene (total)	tal VOCs
Dec-13 (k) Jun-14 (k) Dec-14 Jun-15 (p)	Y DN DN DN DN	ND ND ND ND	ND ND ND ND	ND ND 17 ND	266 278 ND ND	ND ND 2.2 ND	ND ND ND ND	ND ND ND ND	DD ND ND ND ND	ND ND ND	2,050.0 3,850.0 5,910.0 (p) 6,820.0	ND ND 18.90 ND	19,400 16,400 4,670 (p) 15,700	NR NR NR NR	ND ND 32.6 ND	2,840.0 (d) 1,570.0 (i) 451.0 (h) 1,600.0 (d)	ND ND 4 ND	NA NA NA NA	ND ND 2 ND	ND ND 7 ND	ND ND ND ND	ND ND 3 ND	ND ND 30.7 ND	ND ND 1.6 ND	12,000.0 30,500.0 15,000.0 (p) 14,700.0	ND ND ND ND	ND 213.0 63.8 ND	ND ND 5.1 ND	ND ND 17 ND	36,556 52,811 26,236 38,820
MW-16D Jan-11 Jun-11 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 (n)	ND N	ND ND 2 ND 1.3 ND ND ND ND ND ND	ND N	ND N	3 ND ND ND ND ND ND ND ND	4 ND ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	110 100 72 49 55 54.3 43.2 57.6 90.0 54.3	4 4 ND 3 3 2.20 3.50 4.10 (n)	330 400 240 150 130 193 155 191) 288 209	ND ND NR NR NR NR NR NR NR	NR NR ND	NA NA 267 215 189 246.0 218.0 (h) 232.0 (h) 251.0 (h) 225.0 (c)	ND ND ND ND ND ND ND	ND ND ND ND NA NA NA	NA NA NA NA NA ND ND ND ND ND	8 ND	ND	2 ND ND ND ND ND ND ND	ND	ND N	82 75 64 33 29 23.8 21.3 28.9 44.3	ND ND ND ND ND ND ND	2 2 1 ND ND ND ND ND ND	ND N	3 ND ND ND ND ND ND ND ND	548 581 650 447 407 520 440 513 679 517
MW-17 Sep-10 Oct-10 Jun-11 Nov-11 Jun-12 (c) Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND N	ND ND ND ND ND ND ND ND ND	ND N	ND N	ND ND ND 1 ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	10 3 2 46 ND ND ND ND ND ND	ND N	7 5 2 41 ND ND 1.6 ND 2.4 ND	ND ND NR NR NR NR NR NR NR NR NR	NR NR ND	NA NA NA 22 10.2 4.4 4.3 ND 34.3 2.5 ND	ND N	ND ND ND ND ND NA NA NA NA NA	NA NA NA NA NA NA ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	7 2 ND 22 23 ND ND ND ND	ND N	ND N	ND N	ND N	24 10 4 132 33 4 6 37 3
MW-17D Sep-10 Oct-10 Jun-11 Nov-11 Jun-12 (c) Dec-12 Jul-13 Dec-13 (m) Jun-14 (c) Dec-14 Jun-15 (h)	ND N	ND N	ND N	ND N	4 ND ND 15 ND 41 68.4 37 ND 2 ND	1 ND ND 1 ND 1.3 1.3 ND ND	ND N	ND N	ND N	ND N	150 190 290 270 290 470 496 326.0 143.0 66.2 51.7	12 13 ND 14 ND 17 17 13.60 10.20 4.60 ND	940 1,300 2,100 1,900 1,000 1,800 2,310 2,100 1,260 484 399	7 9 ND NR NR NR NR NR NR	NR NR NR 14 ND 19 22.3 16.8 ND 3.8 ND	NA NA NA 575 618 669 612.0 592.0 (I) 435.0 23.3 220.0	ND N	ND ND ND ND ND NA NA NA	NA NA NA NA NA NA NA ND ND ND ND ND ND	5 ND ND 3 ND 4.7 6.6 ND ND ND	ND N	ND N	1 2 ND 3 ND 1.5 2 ND ND ND	ND	26 42 29 38 ND 36.0 36.2 22.6 ND 4.3 ND	ND ND ND 2 ND	9 10 ND 12 ND 11 10.9 7.9 ND 2.9	1 ND ND ND ND ND 1.5 ND ND	ND N	1,156 1,566 2,419 2,847 1,908 3,071 3,584 3,116 1,848 591 671
MW-18 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NR NR NR NR NR NR NR	ND ND ND ND ND ND ND	13.6 ND ND ND ND ND 4.6 ND	ND ND ND ND ND ND ND	ND ND ND NA NA NA NA	NA NA NA ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	14 5
MW-19 Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14 Jun-15 MW-20	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	8 ND ND 6 3.5 3.7 4.0 4.5	NR NR NR NR NR NR NR	ND ND ND ND ND ND ND	5.9 4.0 3.6 5.5 4.1 6.3 4.2 2.9	ND ND ND ND ND ND	ND ND NA NA NA NA	NA NA NA ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	14 4 4 12 8 10 8 7
Dec-11 Jun-12 Dec-12 Jul-13 Dec-13 (g) Jun-14 (g) Dec-14 (m) Jun-15 (m)	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND 8.5 30 83.8 121.0 173.0 166.0 186.0	ND ND 3.1 6.2 7.00 8.80 9.30 9.00	ND 51 120 255 333 359 302 342	NR NR NR NR NR NR NR	ND ND 1.5 ND 2.1 ND	11.9 272 506 845.0 1,230.0 (i) 1,010.0 (i) 660.0 (i) 1,260.0 (i)	ND ND ND ND ND ND	ND ND NA NA NA NA	NA NA NA ND ND ND ND	ND ND ND ND S.6 ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND 2 2.5 3.3 ND ND	ND ND ND ND 2.1 ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	12 332 659 1,194 1,694 1,564 1,137 1,797
MW-21D Jun-12 Dec-12 Jul-13 Dec-13 Jun-14 Dec-14	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	12 14 11.9 10.1 8.3 10.4	ND ND ND ND ND	90 90 102 82.4 76.5 105.0	NR NR NR NR NR	ND ND ND ND ND	84.2 81.8 80.1 70.0 77.0 (g) 138.0	ND ND ND ND ND	ND ND NA NA NA	NA NA ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	8 5.7 5 4.1 2.8 3.2	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	194 192 199 167 165 257

leam and benzene Benzene Brom of orm Chloroform Chloroethane (1,4-Dichloroe 1,2-Dichloroe 1,4-Dichloroe Chloropylben Ethylbenzene Ethylbenzene Methylene Ch Methyl-tert-bu Naphtthalene	ND ND 2.1 ND ND ND ND 167
Jun-15 ND 8.8 ND 89.2 NR ND 66.4 (n) ND NA ND ND ND ND MW-22D	
Jun-12 ND	ND ND 8 ND ND ND ND 64 ND ND 10 ND ND ND ND 94
Jul-13 ND	ND ND 6.5 ND ND ND ND 75
Jun-14 ND	ND ND 9.0 ND ND ND ND 96
Dec-14 ND	ND ND 4.2 ND ND ND ND 56 ND ND ND ND ND ND ND 47
MW-23D Jun-12 ND 29 ND 120 NR ND 149 ND ND NA ND ND ND ND	ND ND 36 ND ND ND ND 334
Aug-12 ND 39 2.2 130 NR ND NA ND ND NA ND ND ND ND ND ND Dec-12 ND	ND ND 35 ND ND ND ND ND 206 ND ND ND ND ND ND ND 305
Jul-13 ND ND ND ND ND ND 1.5 ND ND ND 32.7 2.3 131 NR ND 186.0 ND NA ND ND ND ND ND Dec-13 ND	ND ND 28.6 ND ND ND ND 382 ND ND ND ND ND ND ND 315
Jun-14 ND 1.2 ND 29.1 2.3 101 NR ND 132.0 (g) ND NA ND ND ND ND ND Dec-14 ND	ND ND 24.7 ND ND ND ND 290 ND ND ND ND ND ND ND 365
Jun-15 ND	ND ND 27.3 ND ND ND ND 393
Jun-12 (c) ND	ND ND 53 ND ND ND ND 1,695 1.7 ND 60 1.5 13 ND ND 1,767
Dec-12 ND ND ND ND ND 1.3 ND ND ND ND 61 12 1,500 NR 6.7 393 ND ND NA ND ND ND ND Jul-13 ND	1.8 ND 62 1.5 16 ND ND 2,055 1.4 ND 48.7 1.3 12.4 ND ND 2,130
Dec-13 (c) ND	ND ND 34.1 ND 10.1 ND ND 1,715 ND ND 43.4 ND 14.2 ND ND 2,124
Dec-14 (I) ND 106.0 ND 2,640 NR ND 657.0 (c) ND NA ND	ND ND 60.9 ND ND ND ND 3,464 ND ND 53.3 ND ND ND ND 2,974
MW-27D Sep-13 ND	ND ND ND ND ND ND 4
Dec-13 ND	ND ND ND ND ND ND ND 1 ND ND ND ND ND ND 2
Dec-14 ND	ND
MW-26D Mar-13 ND	ND 5.6 6.3 ND ND ND ND 241
Jul-13 ND	ND ND 6.6 ND ND ND ND 239 ND ND 2.7 ND ND ND ND 122
Jun-14 ND	ND ND 1.8 ND ND ND ND 89
Jun-15 ND 7.1 ND 73.3 NR ND 58.8 ND NA ND ND ND ND	ND ND 2.8 ND ND ND ND 161 ND ND 2.5 ND ND ND ND 142
MW-38 Jun-14 ND	ND ND ND ND ND ND 61 ND ND ND ND ND ND 77
Jun-15 ND	ND ND ND ND ND ND ND 65
MW-39 Jun-14 ND	ND ND ND ND ND ND 10 ND
Jun-15 ND	ND ND ND ND ND ND

a/ all samples measured in ppb (ug/L); all samples collected using low-flow purging techniques

an samples coincided using low-now purging
e = as estimated below the detection limit;
E = result exceeds calibration range
ND = not detected; NA = Not analyzed
NA = not analyzed
NR = constituent not reported

b/suspected laboratory contaminant

b/suspected laboratory contamin c/ sample run at a 10x dilution d/ sample run at 50x dilution f/sample run at a 250x dilution g/sample run at a 2x dilution h/sample run at a 5x dilution i/sample run at a 25x dilution

k/sample run at 200x dilution

l/sample run at 20x dilution

m/sample run at 4x dilution

n/sample run at 2.5x dilution

p/sample run at 400x dilution